
Computers, Environment and Urban Systems 33 (2009) 463–471
Contents lists available at ScienceDirect

Computers, Environment and Urban Systems

journal homepage: www.elsevier .com/locate /compenvurbsys
Evaluation of the use of spectral and textural information by an evolutionary
algorithm for multi-spectral imagery classification

H.G. Momm a,*, Greg Easson b, Joel Kuszmaul b

a University of Mississippi Geoinformatics Center, 224 Lester Hall, University, MS, United States
b Department of Geology and Geological Engineering, 118 Carrier Hall, University, MS 38677, United States

a r t i c l e i n f o
Keywords:
Genetic programming
Remote sensing
Image texture
Evolutionary computation
Optimization
0198-9715/$ - see front matter � 2009 Elsevier Ltd. A
doi:10.1016/j.compenvurbsys.2009.07.007

* Corresponding author. Tel.: +1 662 915 5201; fax
E-mail addresses: hmomm@olemiss.edu (H.G. M

(G. Easson), kuszmaul@olemiss.edu (J. Kuszmaul).
a b s t r a c t

Considerably research has been conducted on automated and semi-automated techniques that incorpo-
rate image textural information into the decision process as an alternative to improve the information
extraction from images while reducing time and cost. The challenge is the selection of the appropriate
texture operators and the parameters to address a specific problem given the large set of available texture
operators. In this study we evaluate the optimization characteristic of an evolutionary framework to
evolve solutions combining spectral and textural information in non-linear mathematical equations to
improve multi-spectral image classification. Twelve convolution-type texture operators were selected
and divided into three groups. The application of these texture operators to a multi-spectral satellite
image resulted into three new images (one for each of the texture operator groups considered). These
images were used to evaluate the classification of features with similar spectral characteristics but with
distinct textural pattern. Classification of these images using a standard image classification algorithm
with and without the aid of the evolutionary framework have shown that the process aided by the evo-
lutionary framework yield higher accuracy values in two out of three cases. The optimization character-
istic of the evolutionary framework indicates its potential use as a data mining engine to reduce image
dimensionality as the system improved accuracy values with reduced number of channels. In addition,
the evolutionary framework reduces the time needed to develop custom solutions incorporating textural
information, especially when the relation between the features being investigated and the image textural
information is not fully understood.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Automated and semi-automated techniques to obtain useful
information from remotely sensed imagery have been researched
since the early 70s as a possible alternative to reduce (or at least
minimize) human interaction (Baumgartner, Steger, Mayer, Eck-
stein, & Ebner, 1999 and Quackenbush, 2004). The quality of the re-
sults obtained by automated and semi-automated techniques are
often measured on the basis of how well they replicate the results
produced through human interpretation (either from field data or
from visual inspection). The development of automated and
semi-automated techniques to extract information from imagery
that mimics the human interpretation is a complex problem. This
lies in the fact that humans tend to interpret imagery using infor-
mation such as context, shape, edge, color, and texture; while most
automated and semi-automated techniques are based solely on
spectral information (Jensen, 1996). Research is now being con-
ll rights reserved.
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ducted to recreate the human ability to classify and discriminate
image features using more sophisticated computer programs de-
signed to incorporate both spectral values (color) and image tex-
ture information into the decision-making process.

Image texture definition varies greatly among disciplines (Russ,
1999). However, there is a scientific consensus defining texture as
the frequency of tonal changes or, in simple terms, as the varia-
tions in brightness values (Lillesand & Kiefer, 2000). These varia-
tions repeat in a periodical or quasi-periodical pattern. Several
image texture operators were developed over the years, but unfor-
tunately image textural analysis is an area in image processing that
still lacks fundamental knowledge (Jahne, 2002). The problem is in
the selection of the most appropriate textural operator (along with
its parameters) to solve a particular problem. This requires the
choice of domain (spatial or frequency), type of textural operator
(edge detection, convolution, first, second, or third order textural
statistics), window size, direction of offset (orientation), offset dis-
tance, which spectral channel to run, and others (Hall-Beyer, 2007).
The selection of custom-tailored image textural operators is com-
monly performed using a trial-and-error approach, where the suc-
cess of the final solution relies on the analyst’s ability to use
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iteratively commercial software packages or by developing new
computer programs. In either case a skilled user is needed and
the entire process can become time consuming due to the large
number of possible texture parameters available.

Alternatively, the search for the optimal texture operator (or se-
quence of texture operators) can be viewed from an optimization
standpoint, and therefore a candidate application for evolutionary
computation techniques (Fogel, 2000) such as genetic algorithms
(Mitchell, 1997) and genetic programming (Koza, 1992). The
strength of evolutionary computation algorithms is the fact that
if one can define a fitness measure for a set of candidate solutions,
then the problem might be solved by evolutionary computation
(Brumby et al., 1999). This provides a desirable alternative solution
for the selection of the textural operator because the trial-and-er-
ror process can be optimized and the need to develop tailored solu-
tions can be significantly reduced.

This study addresses the challenge of selecting problem-specific
image texture operators by evaluating an evolutionary framework
in the task of incorporating spectral and textural information for im-
proved information extraction from multi-spectral remotely sensed
imagery. The proposed framework combines evolutionary compu-
tation with standard image classification algorithms. The optimiza-
tion characteristic of the evolutionary component is used as a data
mining engine to select and combine through mathematical opera-
tions, the most appropriate subset of textural operators (along with
its parameters) from a set of available texture operators. In this pro-
cess, the search for the most favorable solution in the solution space
is optimized, and, the overhead needed to develop customized
solutions is reduced. The objective of this study is to evaluate the
performance of the proposed evolutionary framework in evolving
custom-tailored solutions, represented by mathematical operations
of image textural and spectral channels, to improve the classifica-
tion results of standard image classification algorithms.
2. Related work

Evolutionary algorithms have been applied successfully to a wide
range of image processing problems, such as image classification
(Brumby et al., 1999; Korczak & Quirin, 2003; Pal, Bandyopadhyay,
& Murthy, 2001; Perkins et al., 2000; Agnelli, Bollini, & Lombardi,
2002; Lin & Bhanu 2005; and Bandyopadhyay & Maulik, 2002), fea-
ture extraction (Daida, Hommes, Ross, & Vesecky, 1995 and Krawiec
& Bhanu, 2005), and inverse modeling (Momm, Easson, & Kuszmaul,
2007; Chang, Liu, & Wen, 2007; Chen, 2003; Fonlupt & Robilliard,
2000; Fang, Liang, & Kuusk, 2003; Ines & Honda 2005; and Drunpob,
Chang, Beaman, Wyatt, and Slater (2005). There is also work dedi-
cated to the use of evolutionary algorithms to incorporate image tex-
tural information into the image processing framework, as an
alternative to developing custom-tailored solutions for particular
applications (Daida, Bersano-Begey, Ross, & Vesecky, 1996; Harris
& Buxton, 1996; Poli, 1996a; and Bhandarkar, Zhang, & Potter, 1994).

In the work described by Poli (1996a, 1996b), genetic program-
ming was used to discover complex and problem-specific filters to
solve problems of image enhancement in the medical field. The
objective of Poli’s work was to discover effective filters capable of
accentuating specific characteristic of the image. The image filters
were formed by averaging functions of local ‘‘window” operators
(convolution-type operations) of different sizes. Poli justified the
use of genetic programming as a unique tool to combine all available
pieces of information in a non-linear and complete way. Daida et al.
(1996) used genetic programming as an optimization tool to develop
image processing rules based on spectral arithmetic and textural
information to extract desired pattern from ERS SAR data products.
In that research, four channels were added to the original dataset:
two mean images with window size of 3 � 3 and 5 � 5 and two other
channels of edge detection operators (Laplacian image with kernel
5 � 5 and Laplacian image of the mean 3 � 3 image also with kernel
5 � 5). Harris and Buxton (1996, 1997) proposed the use of genetic
programming to develop one-dimensional (1D) edge detector func-
tions for real and synthetic generated images; and Bhandarkar et al.
(1994) used GA to develop an (2D) edge detector.

Research to investigate the use of evolutionary computation to
select and to combine textural and spectral information (in a non-
linear way) to address remotely sensed image classification prob-
lems is very limited. The textural operators in use represent only
a small subset of the larger set of the available set of image texture
operators. Furthermore, the majority of the previous investigations
dealt with single-band images, whereas the use of textural infor-
mation of multi-spectral remotely sensed images offers an extra le-
vel of difficulty. Most remotely sensed datasets are composed of
multi-spectral (or hyper-spectral) images and therefore the texture
operators are applied to each individual spectral band. As a result,
the search space (originally made by the set of textural operators)
is now multiplied by the number of spectral bands making the task
of selecting the most appropriate combination of spectral and tex-
tural information more complicated.
3. Evolutionary framework

3.1. Background

3.1.1. Evolutionary computation
Evolutionary computation is a stochastic approach based on the

concept of biological evolution first introduced by the work of
Charles Darwin and Alfred Russel Wallace in 1858. The classic Dar-
winian evolutionary theory, when combined with selectionism
theories and with genetics has become the Neo-Darwinian theory
(Fogel, 2000). In this theory, the enormous variety of organisms liv-
ing on Earth is the result of processes acting on populations of
organisms and their genetic codes (Hoffman, 1989, p. 39). These
processes are: reproduction, mutation, competition, and selection.
According to the biological evolutionary process, over a large per-
iod of time and many generations, the individuals are able to adapt
to the environment that they live in will have a greater chance to
survive and therefore pass their genetic code to the next genera-
tion. Conversely, the individuals that are unable to cope with the
environment that they live in will most likely die out and therefore
their genes disappear (Koza, 1992).

The attempt to simulate biological evolution through computer
programs comprises the field of evolutionary computation. Differ-
ent algorithms were developed over the years. The four most com-
mon types of algorithms based on the evolutionary principles are
evolutionary programming, evolutionary strategies, genetic algo-
rithms, and genetic programming (De Jong, 2006). The evolution-
ary framework described in this manuscript uses genetic
programming as the optimization and data mining engine.
3.1.2. Genetic programming
Genetic programming (GP) algorithms are designed to automat-

ically generate computer programs through the process of natural
selection also know as survival of the fittest (Koza, 1992). The overall
evolutionary process is very similar to the one used in genetic algo-
rithms; however, GP differs from genetic algorithms and other
types of machine learning algorithms in its solution representa-
tion. In GP, candidate solutions for the problem are computer pro-
grams, often times expressed as mathematical expressions,
internally represented as hierarchical tree structures rather than
a fixed size strings in the case of genetic algorithms or a vector
of weights in the case of artificial neural networks. Fig. 1 illustrates
this representation. This data structure increases the complexity of



Fig. 1. Illustration of the candidate solution representation used by genetic
programming. In genetic programming a candidate solution is characterized by a
computer program that is internally represented by a hierarchical tree structure. In
this tree representation, the nodes contain basic functions (colored squares) and the
leaves the arguments used by these functions (white squares). Fig. 2. Conceptual diagram illustrating the main components of the evolutionary

framework and its integration to standard image classification algorithms.
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the system because these hierarchical trees constantly change size
and shape when the structure undergoes adaptation.

The main components of a GP system are: a set of functions, a
set of parameters, and a fitness function. The set of functions con-
tains the basic building blocks which are assembled by GP to form
different candidate solutions during the evolutionary process. The
set of parameters are pre-defined arguments to be used by the
evolved computer programs. The fitness function is problem-spe-
cific user-defined function designed to provide the means to com-
pare and to rank individual candidate solution.

GP operates in an iterative mode by constantly updating the set
of candidate solutions (also referred to as population) until the
most fit solution (individual) is found. Initially, the first population
is random generated and after each iteration, each candidate solu-
tion in the set of possible candidate solutions is evaluated based on
the fitness function and sorted accordingly. Only the solutions with
the highest fitness are then selected to be carried forward to form
the next new set of candidate solutions (new generation). Some of
the candidate solutions are carried forward with no change (repli-
cation) while others are susceptible to genetic operations such as
mutation and crossover. Mutation is often considered a secondary
operation and its main purpose is to reintroduce diversity into the
population (Koza, 1992). In GP, mutation is commonly imple-
mented by an operation that selects one solution from the set of
candidate solutions with the highest fitness values, randomly se-
lects a node of the tree (hierarchical tree representation show in
Fig. 1), removes whatever is below the selected node, and inserts
a new randomly created sub-tree at that point (Koza, 1992). In
the crossover operation, two solutions are randomly drawn from
the set of candidate solution with the highest fitness values. These
two solutions are referred to as parents. One node in each parent is
then randomly selected. The tree parts composed of the selected
node toward the terminals of each tree are then switched and
two new candidate solutions formed (children). When the stopping
criteria are met the process comes to an end and the most fit indi-
vidual is outputted as a computer program.
3.2. Framework description

The evolutionary framework (EF) is designed to evolve prob-
lem-specific computer programs, formed by mathematical expres-
sions of the image’s original channels, to maximize the ability of
standard image classification algorithms to separate the target fea-
ture from the remaining image background. In this approach, EF
combines genetic programming, standard image processing algo-
rithms, and accuracy assessment algorithms with standard image
classification algorithms to form a hybrid methodology that
searches for the optimal computer program in a learn-from-exam-
ples schema (Momm, Easson, & Wilkins, 2006). Fig. 2 is a schematic
describing the key components of the evolutionary framework.

In this system, the user provides three datasets: a multi-channel
image, reference data indicating image locations where the feature
of interest is present and image locations where the feature of inter-
est is not present, and the parameters controlling the evolutionary
process. The parameters include the number of image channels,
number of iterations (generations), population size, percentage of
crossover, percentage of mutation, restarting threshold, and stop-
ping criteria.

In the first iteration (generation), the genetic programming
algorithm randomly generates a set P of candidate computer pro-
grams, referred to as candidate solutions for the problem being
investigated. This set of candidate solutions are individually ap-
plied to the user-provided multi-channel image, producing a new
set of single channel images, called processed images. This new
set of processed images is then passed to the image classification
algorithm to individually classify them into binary classified
images containing only two classes, one representing the class
where the target feature is found and another representing the
class where the target feature is not found.

The classification accuracy assessment algorithm computes the
fitness values of each candidate solution (computer program) by
comparing the binary classified image generated by the candidate
solution to the user-provided reference data. Classification accu-
racy measurements are derived from the contingency table (Lille-
sand & Kiefer, 2000) in the form of overall accuracy or Kappa
coefficient of agreement (Cohen, 1960).

All candidate solutions are then sorted by fitness values and
then the algorithm checks the stopping criteria represented by
the maximum number of iteration and the fitness threshold. If
any of these conditions are achieved, the EF outputs the ‘‘most fit”
candidate solution of the last iteration in the form of a computer
program, a classified binary image, a processed image generated
by the computer program and the accuracy value yielded.

Conversely, if none of the stopping criteria are met, the iterative
process continues following the principles controlling the biologi-
cal evolution theory where only the fittest candidate solutions are
carried forward to form the next generation. Only the candidate
solution with the highest fitness values (in this work the upper
30%) are carried forward to the next generation after genetic oper-
ations such as replication, crossover, and mutation are performed.
The newly evolved set of candidate solutions are then applied to
the multi-channel image and the entire process is repeated until
one of the stopping criteria is reached.
3.3. Implementation

The entire system was implemented in C and C++ computer
programming languages as a result of the necessity to have new
and highly customizable tools combined with high computational
performance offered by both programming languages. The evolu-
tionary framework was implemented as distinct modules (dy-
namic libraries) and linked together during run time. This
modular architecture allows for modifications and/or additions of
individual modules without changing the entire system. The fol-
lowing are examples of evolutionary framework modules: genetic
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programming, image texture, image processing, image statistics,
fitness function, function set, fitness computation, input prepara-
tion, and others. Furthermore, the selected architecture facilitates
the integration of the evolutionary framework with different exter-
nal image processing algorithms, such as the image classification
module.
4. Methods

4.1. Texture operators

Twelve image texture operators were selected and divided into
three groups: first order image texture statistics, secondary image
textural operators, and Haralick texture operators (Haralick, Shan-
mugam, & Dinstein, 1973). All of the operators chosen are based on
the concept of convolution function (often referred to as neighbor-
ing operations). Convolution functions are a filtering process in
which mathematical local operations are performed on a pre-de-
fined size and shape window that moves across the image. An
operation is performed using the pixels within the window as
arguments for a function and the resulting value is put in the out-
put image which usually has the same number of pixels as the ori-
ginal image. The center of the window in the original image and
the output pixel in the output image has the same coordinates
(Schowengerdt, 1997). Convolution operations are performed on
individual image channels. Fig. 3 depicts the convolution concept.

4.1.1. First order image texture statistics
In this group are the most basic convolution functions, formed

by descriptive statistics such as: average, variance, standard devia-
tion, and entropy. These descriptive statistics are by definition
invariant on any permutation of the pixels, and therefore they
are rotation and scale independent (Jahne, 2002). The following
equations were used to calculate average, standard deviation,
and entropy images.

Average ðAVEÞ ¼ 1
W

� �Xqk

i¼0

ði � f iÞ ð1Þ

Standard Deviation ðSTDÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Entropy ðENTÞ ¼
Xqk

i¼0
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W

� �
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fi

W

� �
ð3Þ

In these equations, the term fi represents the frequency of a pix-
el value i within the window considered. The term qk represents
the quantification of the image channel k (radiometric resolution).
The total number of pixels in the window considered is repre-
sented by W.

4.1.2. Secondary image textural operators
The second set of textural operators, referred to as secondary

image textural operators, is formed by a set of texture filters. Four
Fig. 3. Illustration of the convolution function (neighboring operations) concept.
texture operators are included in this set: minimum (MIN), maxi-
mum (MAX), minimum–maximum difference (MMD), and texture
unit number (TUN). The MIN and MAX functions output the mini-
mum and maximum, respectively, of the pixels within the consid-
ered window. The MMD textural operator returns the difference
between the MAX and the MIN values. The TUN is based on the
idea of quantifying the ordering of the pixel values in a clockwise
way (Jensen, 1996). In a 3 � 3 window size, for example, let the
pixel values be represented as V = {V0, V1, V2, V3, V4, V5, V6, V7, V8}
where V0 is the window’s central pixel. Another set, referred to
as the temporary texture unit, contains TTU = {E1, E2, E3, E4, E5,
E6, E7, E8} where each element is computed as:

Ei ¼
0; if Vi < V0

1; if Vi ¼ V0

2; if Vi > V0

8><
>:

9>=
>; for i ¼ 1—8 ð4Þ

Because each element can have only one of the possible three
values the TUN can be computed as following:

TUN ¼
XW�1

i¼1

3i�1Ei ð5Þ
4.1.3. Haralick textural operators
The third group of texture operators was originally proposed by

Haralick et al. (1973). This group of texture operators is based on
the concept of the gray level co-occurrence matrix (GLCM) which
takes into consideration the relationship between groups of two
neighboring pixels within the window being considered. The GLCM
is computed by counting the number of distinct pair of pixel values
according to a pre-defined pixel separation and orientation. In this
study the GLCM matrix was added to its transpose to obtain a sym-
metric matrix. This operation was performed to reduce the number
of possible orientations. Adding the GLCM matrix to its transpose
causes the opposite orientation to be also considered (Hall-Beyer,
2007). For example, by adding the GLCM matrix obtained by con-
sidering an East orientation (0�) to its transpose results in an
East–West matrix. Finally the GLCM matrix was normalized to ex-
press its values as probability.

Probability ðPi;jÞ ¼
Vi;jPqk

i;j¼0Vi;j
ð6Þ

The term Vi,j represents the gray level co-occurrence matrix
where i and j represent the sample and line numbers, respectively.
Five textural operators were selected from the 14 originally pro-
posed by Haralick:

Contrast ðCONÞ ¼
Xqk

i;j¼0

Pi;jði� jÞ2
h i

ð7Þ

Dissimilarity ðDISÞ ¼
Xqk

i;j¼0

½Pi;jji� jj� ð8Þ

Homogeneity ðHOMÞ ¼
Xqk

i;j¼0

Pi;j

1þ ði� jÞ2

" #
ð9Þ

Angular Second Moment ðASMÞ ¼
Xqk

i;j¼0

½P2
i;j� ð10Þ

Entropy ðENTÞ ¼
Xqk

i;j¼0

½Pi;j½� lnðPi;jÞ�� ð11Þ
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4.2. Texture information as image channels

One common difficulty when using evolutionary computation
to solve image processing problems is the significant computa-
tional overhead (CPU time and large memory requirements) that
can be generated (Daida et al., 1996). A typical run of evolution-
ary computation, addressing remote sensing problems, can easily
take minutes to several hours to complete. This is due to the fact
that each individual candidate solution is formed by a sequence
of operations (equations) where the attributes consist of images
and during the evolutionary process these operations are per-
formed thousands (or even millions) of times during the fitness
evaluation depending on the population size and number of iter-
ations. The situation is aggravated when image textural operators
are incorporated. Due to the computational load and memory
size required to compute texture images, when added to the al-
ready complex programs evolved by the evolutionary framework,
the incorporation of textural information can increase the com-
putational time by many orders of magnitude (Poli, 1996a,
1996b).

One possible alternative is to preprocess the textural informa-
tion prior to the evolutionary process and store it as additional
channels to the original datasets. In this approach, the textural
information is used by the evolutionary algorithm as a set of vari-
ables (terminal set) instead of functions (function set) and thus
being computed only once for the entire process.

Table 1 lists four distinct images with varying number and
types of image textural operators. The first image does not have
textural channels and therefore only the image’s original spectral
channels are considered. The second, third, and fourth images are
formed by the image’s original spectral channels plus the textural
channels resulted from the application of the texture operators
from the first order image texture statistics group (Section 4.1.1),
secondary image textural operators group (Section 4.1.2), and
Haralick’s textural operators (Section 4.1.3), respectively. Each var-
iable is identified by two indices: the first index denotes the spec-
tral band in which the texture operator was applied while the
second index denotes the window size (3 for 3 � 3, 5 for 5 � 5,
etc.). Image 4 in Table 1, was generated considering an East–West
Table 1
Different number and types of image textural channels of the four images considered in t

Image 1 Image 2 Image 3
(4 channels) (52 channels) (68 channel

B1 B2 B3 B4 B1 B2 B3 B4 B1

AVE13 AVE23 AVE33 AVE43 MIN13

AVE15 AVE25 AVE35 AVE45 MIN15

AVE17 AVE27 AVE37 AVE47 MIN17

AVE19 AVE29 AVE39 AVE49 MIN19

STD13 STD23 STD33 STD43 MAX13

STD15 STD25 STD35 STD45 MAX15

STD17 STD27 STD37 STD47 MAX17

STD19 STD29 STD39 STD49 MAX19

ENT13 ENT23 ENT33 ENT43 MMT13

ENT15 ENT25 ENT35 ENT45 MMT15

ENT17 ENT27 ENT37 ENT47 MMT17

ENT19 ENT29 ENT39 ENT49 MMT19

TUN13

TUN15

TUN17

TUN19

XXXij, where XXX represents the textural operator, i represents the image spectral chan
Bi represents the individual original spectral channels.
orientation with a separation of one pixel. Fig. 4 shows examples of
selected textural channels for images 2–4.
5. Experimental results

This work is based on the premise that image texture contains
important information for the problem being investigated, and
thus, the classification of images with additional textural channels
should yield improved results than those without them. The fol-
lowing experiment was designed to quantitatively examine the
overall performance of standard image classification algorithms
in integrating spectral and textural information with and without
the aid of the evolutionary framework. The image classification
algorithm selected is the K-Means algorithm (Tou & Gonzalez,
1974) due to its simplicity and low computational cost. However,
it is important to mention that other image classification algo-
rithms could had been used instead.

The K-Means algorithm was set to classify the provided images
into a two class thematic images. One class represents the feature
of the interest while the other represents the remaining image
background. This constitutes a challenge for the classification algo-
rithm because it creates clusters based on statistical groupings of
the spectral/textural information of each channel, which may or
may not correspond to the desired feature (Aronoff, 2005). Yet, this
scenario was chosen as a test bed to evaluate the ability of the evo-
lutionary framework to select a subset of textural and spectral
channels from a larger set and to combine them in a non-linear
fashion to improve the user-defined classifier’s performance.

The problem selected was designed to assess the classifier’s
ability to separate features with similar spectral signatures but dis-
tinct textural pattern. This was addressed by investigating a prob-
lem which the goal was to discern planted evergreen tree fields
from natural evergreen fields using high spatial resolution com-
mercial imagery. The spectral similarities between these two fields
combined with the limited spectral resolution offered by the se-
lected sensor (four spectral channels: blue, green, red, and infra-
red) limits the ability of classifiers to rely solely on spectral
information. In addition, selection of the appropriate texture oper-
he evaluation of the evolutionary framework.

Image 4
s) (84 channels)

B2 B3 B4 B1 B2 B3 B4

MIN23 MIN33 MIN43 ASM13 ASM23 ASM33 ASM43

MIN25 MIN35 MIN45 ASM15 ASM25 ASM35 ASM45

MIN27 MIN37 MIN47 ASM17 ASM27 ASM37 ASM47

MIN29 MIN39 MIN49 ASM19 ASM29 ASM39 ASM49

MAX23 MAX33 MAX43 ENT13 ENT23 ENT33 ENT43

MAX25 MAX35 MAX45 ENT15 ENT25 ENT35 ENT45

MAX27 MAX37 MAX47 ENT17 ENT27 ENT37 ENT47

MAX29 MAX39 MAX49 ENT19 ENT29 ENT39 ENT49

MMT23 MMT33 MMT43 CON13 CON23 CON33 CON43

MMT25 MMT35 MMT45 CON15 CON25 CON35 CON45

MMT27 MMT37 MMT47 CON17 CON27 CON37 CON47

MMT29 MMT39 MMT49 CON19 CON29 CON39 CON49

TUN23 TUN33 TUN43 DIS13 DIS23 DIS33 DIS43

TUN25 TUN35 TUN45 DIS15 DIS25 DIS35 DIS45

TUN27 TUN37 TUN47 DIS17 DIS27 DIS37 DIS47

TUN29 TUN39 TUN49 DIS19 DIS29 DIS39 DIS49

HOM13 HOM23 HOM33 HOM43

HOM15 HOM25 HOM35 HOM45

HOM17 HOM27 HOM37 HOM47

HOM19 HOM29 HOM39 HOM49

nel, and j the convolution window (in pixels).



Fig. 4. Examples of additional image channels generated by the application of textural operators to individual original spectral channels of the satellite image. Image are
identified by the texture operator (three letter acronym) followed by the indices representing the spectral channel used and the convolution window size. These images were
used in the investigation of the evolutionary framework.
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ator and its parameters represents an extra level of difficulty due to
the large number of possibilities to choose from.

5.1. Data preparation

A scene acquired with the QuickBird sensor on March 2007 cov-
ering an area with 1.3 km2 located in Oxford, Mississippi, USA was
selected as the study site (Fig. 5A). The four multi-spectral original
channels, blue (485 gm), green (560 gm), red (660 gm), and near
infrared (830 gm), were converted from scaled radiance to abso-
lute radiance using the commercial software package ENVI. Poly-
gons were generated to be used as reference in the evolutionary
framework by manually delineating of fields with planted and
fields with natural evergreen trees. The fields intentionally in-
cluded pure and mixed pixels containing tree canopy, grass land,
and shadows. This approach was adopted to reinforce the algo-
rithm’s aptitude to use textural over spectral information. Fig. 5A
illustrates the study site and the fields selected as reference. Four
convolution window sizes were considered: 3 � 3, 5 � 5, 7 � 7,
and 9 � 9.

The original multi-spectral image was loaded into the evolu-
tionary framework and the texture module was used to compute
the texture channels previously described in Section 5.1. Four
images were then created by grouping the different texture chan-
nels. Table 1 shows each of the images created with their respec-
tive spectral and textural channels.
5.2. Methodology

Table 2 summarizes the parameters controlling the run of the
evolutionary framework. These parameters were selected based
on recommendations by Koza (1992) combined with the experi-
ence gained during the use of the evolutionary framework to ad-
dress different remote sensing problems. Three independent
realizations of the evolutionary framework were performed for
each of the images considered and the realization with the highest
fitness value was selected. This approach was adopted because the
genetic programming algorithm begins with a random seed and
converges to the optimal solution. Therefore, it is possible that
important parts of the solution could be left out of the initial set
of candidate solution. In those cases, the algorithm’s convergence
ability could be compromised leading to convergence to a local
minimum rather than the desired global minimum. Uncertainty
analysis of the variability of the system due to the random seed
generation (from which the algorithm begins) indicated that the
convergence of the algorithm is influenced by the diversity of the
population (Momm, Easson, & Kuszmaul, 2008).

Even though no mutation operation was used, the diversity of
the population was controlled by a procedure known as ‘‘restart-
ing” or introduction of new genetic material. In this process new
genetic material is introduced into the evolutionary process after
a number of iterations without change in the fitness values of
the ‘‘most fit” candidate solution. The restarting threshold of five



Fig. 5. Satellite image used in the evaluation of the evolutionary framework. (A) shows the scaled reflectance values of QuickBird sensor (spectral band combination 4-3-1).
Overlaid are polygons representing manually classified fields with natural (green) and planted (blue) evergreen trees. (B) Example of a preprocessed image produced by the
evolutionary framework. (C) Classified image generated with the evolutionary framework overlaid on the satellite image. Color symbology: light blue – true positive, dark
blue – false positive, yellow – true negative, and orange – false negative. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 2
Summary of the parameters used to control the run of the evolutionary framework.

Parameters Description

1. Terminal Set Image’s channels
2. Function Set SUM, SUB, DIV1, MUL, SQRT2, LOG3, ABS
3. Fitness Kappa coefficient of agreement
4. Population Size 40 Candidate solutions
5. Generations 91 (initial randomly generated plus one)
6. Crossover 30%
7. Stopping Criteria 91 Generations (iterations) or fitness threshold of 0.975
8. Restarting Threshold 5 Consecutives generations without change in the fitness value

1 – safe division, 2 – safe square root, and 3 – safe logarithm.

Table 3
Comparison of kappa coefficient of agreement values generated by the evolutionary framework using different levels of textural information.

Scenario number Image number Classification method Total number of channels Number of selected channels Kappa coefficient of agreement

1 1 K-Means 4 N/A 0.058
2 1 K-Means+EF 4 3 0.427
3 2 K-Means 52 N/A 0.004
4 2 K-Means+EF 52 5 0.609
5 3 K-Means 68 N/A 0.020
6 3 K-Means+EF 68 5 0.600
7 4 K-Means 84 N/A 0.465
8 4 K-Means+EF 84 9 0.403
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was selected and the standard deviation values of 0.027, 0.077,
0.090, and 0.027 were obtained for the three runs of the system
for the scenarios 2, 4, 6, and 8, respectively. For further description
of the restarting process please refer to the work of Momm et al.,
2008 and Ines & Honda, 2005.

The output of each realization is composed of a processed im-
age, a classified binary image, solution evolved (mathematical
expression), and a kappa coefficient of agreement value (Cohen,
1960). Table 3 shows the accuracy results expressed as kappa coef-
ficient of agreement and Table 4 displays the final solutions gener-
ated by the evolutionary framework. The processed image is the
result of the application of the evolved candidate solution to the
original image. Fig. 5B presents an example of a processed image
generated by the evolutionary algorithm. The clustering of the pro-
cessed image into two classes creates the classified binary image.
Fig. 5C shows an example of a classified binary image overlaid on
the original imagery. The kappa statistic value is then computed
by comparing the final binary image with the user-provided refer-
ence data.

5.3. Discussion of results

Comparisons were made for the classification results of four dif-
ferent images obtained by using a standard classification algorithm
with and without the aid of the evolutionary framework (Table 3).
When the evolutionary framework was not involved, scenarios 1, 3,
5, and 7, the image is processed only with to the classification algo-
rithm. In the scenarios that the classifier was assisted by the evo-



Table 4
Mathematical expressions developed by the evolutionary framework combining spectral and textural information.

Scenario number Solution

2 ((SQRT((SQRT((B3/B4)) * ((B3 + B4) + (B3 * (B3 + B4))))) � B2)/ABS(((SQRT(((B3/B4)/B4)) * ((SQRT((B3/B4)) * ((B4 + (B3 * ((((SQRT((B3/B4)) *
((((B3 � B4) + SQRT((B3/B4))) + (B4 + (B3 * (SQRT((B2/B4)) * (B4 + (B3 * (B3 + B3))))))) + (B3 * ((B3 � B4) + SQRT(((B3 * SQRT((B3/B4)))/B4)))))) *
B2) � B4) + B4))) + (B3 * SQRT(((SQRT((B3/B4)) * ((B4 + (B3 * ((((SQRT((B3/B4)) * ((B4 + (B4 + (B3 * (SQRT((B2/B4)) * (B4 + (B3 * (B3 + B3)))))))
+ (B3 * ((B3 � B4) + SQRT((B3/B4)))))) * B2) � B4) + B4))) + (B3 * SQRT((B3/B4))))) * B2))))) * B2)) * B2)))

4 (B4 � (((STD39 * ENT37) + ABS(AVE29)) * ABS(ENT49)))
6 ((MAX19 + ((B3 �MAX19) + ((MAX23 + SQRT (TUN29)) + MMT49))) * LOG10 (B3))
8 (((HOM23 + DIS25) + (ABS(((((DIS25/ENT15) + ((((B3/HOM37)/ENT15) + (B3 + SQRT((DIS19 � HOM23)))) + DIS25)) + (ABS((((HOM37 + ENT15)

+ (B3/(HOM37 + DIS25))) + SQRT(HOM23)))/HOM23)) + (DIS25/HOM23))) + ((B4 * ((B3/HOM37) � HOM23)) � ENT15))) + (((HOM37 + ENT15)
+ (B3/HOM37)) + SQRT(((B3/HOM37) � (ABS((((HOM37 + ENT15) + (B3/HOM37)) + SQRT(((B3/HOM37) � HOM23))))/HOM23)))))
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lutionary framework, scenarios 2, 4, 6, and 8, the mathematical
solutions developed by the evolutionary framework (Table 4) are
applied to the original image resulting into a new image (referred
to as processed image) which is then passed to the classification
algorithm. In both cases, the accuracy of the result of the classifica-
tion is expressed as kappa statistics.

The kappa statistic (Cohen, 1960) was chosen as the accuracy
metric because it accounts for the rate chance of agreement. It var-
ies between �1 and +1. Negatives values indicate agreement
poorer than the random chance of agreement whereas positive val-
ues indicate better agreements beyond the random chance of
agreement. A kappa value of zero indicates agreement merely by
chance. Landis and Kock (1977) proposed that kappa values greater
than 0.75 indicates excellent agreement beyond the random
chance of agreement, values between 0.4 to 0.75 indicates good
agreement beyond the random chance of agreement, and values
between 0 and 0.4 indicates poor agreement beyond chance.

Comparison of kappa coefficient values for images 1–3 shows
higher values for the classification process aided by the evolution-
ary framework. These images changed from poor agreement to
good agreement beyond chance. Images 2 and 3 changed to the
upper part of the good agreement range. Conversely, the results
from the classification of image 4 did not show improvement in
kappa values with the aid of the evolutionary framework.

Image 4 is composed by a group of image textural operators re-
ferred to as second order statistics (Haralick et al., 1973). These sta-
tistical measurements were computed using the co-occurrence
matrix, which considers the relationship of groups of two pixels
in the image. In this process, each pair of pixels in the window con-
sidered is evaluated individually. The selection of the pair of pixels
depends on the offset distance and the angular orientation chosen.
Image 4 textural channels were computed using an offset of one
(immediate neighbor) and an East–West orientation (0�). The
introduction of these texture channels have provided improve-
ments in the results (scenario 7) when compared to the image with
spectral channels only (scenario 1). However, the assistance of the
evolutionary framework yielded results in the same order of mag-
nitude (scenario 8) than the scenario with no aid from the evolu-
tionary framework (scenario 7). The lack of improvement in the
accuracy of scenario 8 could be partially attributed to the choice
of offset distance and orientation in the creation of the co-occur-
rence matrix combined with the large number of channels in image
4 (84). The increasing the number of channels also increases the
complexity of the problem by enlarging the search space. It is pos-
sible that, with the larger search space (84 channels) the genetic
programming algorithm was not able to converge to the optimal
solution with the number of iterations considered (90).

Tables 3 and 4 also illustrate the ability of the evolutionary
framework to reduce the dimensionality of the data set by select-
ing the most appropriate textural/spectral channels for the prob-
lem being investigated. In the scenarios number 4 and 6, higher
accuracy results were obtained with non-linear combination of five
channels out of 52 and 68, respectively. Even in the scenario num-
ber 8, kappa coefficient values in the same order of magnitude as
the scenario number 7 were obtained with reduced number of
channels.
6. Conclusions

The experiment focused on assessing the performance of the
evolutionary framework to evolve custom solutions by combining
spectral and textural information in a non-linear way. This was
accomplished by an experiment to separate fields with similar
spectral characteristics but distinct textural patterns.

The use of texture information as image channels represents a
way to reduce the computational load by many orders of magni-
tude when compared to the option of using texture operators in
the function set which requires the value to be computed during
the evolutionary process. However, the second alternative should
not be discarded. Complex convolution functions, such as the Hara-
lick’s textural operators, have many parameters to be defined. The
orientation and the separation between pairs of pixels along with
the convolution window size considered could be defined by the
optimization algorithm according to the feature being investigated
and/or the type of problem being addressed.

Based on the experimental results, further investigation should
be performed to assess the impact of the dimensionality, repre-
sented by the total number of channels, on the algorithm’s conver-
gence ability. Images with large number of channels represent a
more difficult task for the genetic programming algorithm because
the probability of selection of each channel is considerably smaller.
For example, for image 1 (four channels) the probability that each
channel will be selected during the evolutionary process is 25% (1/
4) where for image 4 (84 channels) is 1.1% (1/84). Higher dimen-
sionality increases the chances that important channels necessary
for the final solution may not be included in the initial pool of can-
didate solutions and/or the subsequent pool of candidate solutions
used in the restarting process.

The research conducted has demonstrated that image texture
contains significant information, when coupled with spectral infor-
mation, improves the overall separability between the target feature
and the remaining image background. The results demonstrated the
ability of the evolutionary framework to combine spectral and tex-
tural information in a non-linear and complete way to form cus-
tom-tailored solutions to address specific problems. The
mathematical functions developed by the evolutionary framework
are tailored to the problem being investigated. Compared to alterna-
tive existing machine learning algorithms, such as ANN and genetic
algorithms, these mathematical functions are easily interpreted by
humans (Fig. 1). When applied to the original image these functions
generate a single-band processed image designed to maximize the
influence of the desired feature while minimizing the influence of
the remaining image background.

Additionally, traditional trial-and-error processes used to select
the type of textural operators and their parameters (window size,
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orientation, and separation) combined with the number of spectral
channels found in multi-spectral images, can limit the use of tex-
tural information in supporting remote sensing applications. This
iterative process can become labor intensive and time consuming.
The use of optimization algorithms such as evolutionary computa-
tion provides an alternative capable of significantly reducing the
time necessary to develop custom solutions incorporating texture.
This is particularly true when the relation between the feature
investigated and the image textural information is not fully
understood.
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