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Empirical Mode Decomposition Analysis
for Visual Stylometry

James M. Hughes, Dong Mao, Daniel N. Rockmore, Yang Wang, and Qiang Wu

Abstract—In this paper, we show how the tools of empirical mode decomposition (EMD) analysis can be applied to the problem of
“visual stylometry,” generally defined as the development of quantitative tools for the measurement and comparisons of individual style
in the visual arts. In particular, we introduce a new form of EMD analysis for images and show that it is possible to use its output as the
basis for the construction of effective support vector machine (SVM)-based stylometric classifiers. We present the methodology and
then test it on collections of two sets of digital captures of drawings: a set of authentic and well-known imitations of works attributed to
the great Flemish artist Pieter Bruegel the Elder (1525-1569) and a set of works attributed to Dutch master Rembrandt van Rijn (1606-
1669) and his pupils. Our positive results indicate that EMD-based methods may hold promise generally as a technique for visual

stylometry.

Index Terms—Empirical mode decomposition, stylometry, classifier, image processing.

1 INTRODUCTION

CLASSIFICATION plays an important role in the evaluation
of a work of art: Our knowledge that a painting is by
Picasso changes our entire conception of its value artisti-
cally, art historically, culturally, and monetarily. When
dealing with works of art, classification in this sense is
known as “attribution” or “authentication.” Traditionally,
scientific investigation for the purpose of attribution of
works of art has been the domain of technical art historians,
who employ the tools of materials science. These tools
enable an examination of primary physical evidence
derived from the work. For example, studies of the media
can be performed to determine if they are consistent with a
known working style of the artist. The pigments and paper
can be analyzed and, through methods like carbon dating,
the time period of the work can be determined. Tools such
as infrared and x-ray analysis enable us to look at
information that lies beneath the surface of the work. While
mathematics plays a role in these analyses through simple
applications of well-known techniques such as differential
equations, it is ultimately secondary to physics.

But, physical examination can accomplish only so much,
after which we must turn to visual information. Histori-
cally, visual information has been assessed using the
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techniques of “connoisseurship,” a process by which a
questioned work is subjected to evaluation by a few experts
who are steeped in the work and life of the artist of interest.
The analyses are usually based on the experts’ extensive
visual experience and encyclopedic knowledge of the career
of the artist in question, as well as other kinds of art
historical data. In short, the connoisseur is an expert in the
“style” of the artist and the period and has acquired an
ability to identify this style and distinguish it from others.
While there has long been a notion of “scientific
connoisseurship,” in the sense that this discipline possesses
a principled underlying methodology (see, e.g., [7], [41]), it
is only recently, with the advent of high-resolution digitiza-
tion of works of art and the efforts that many museums and
scholars are making to digitize large collections (e.g.,
Artstor—www .artstor.org or Google’s Art Project—www.
googleartproject.com) as well as individual works (for the
purposes of conservation), that we find ourselves at a point
where it may be possible to apply a variety of new
mathematical tools to the analysis of art, and in particular
to the problem of the quantification of artistic style.
Although relatively new to the visual arts, the problem of
style quantification is one that has a long history. Its roots
lie in the search for methods for quantifying literary style,
which date at least as far back as the 1854 ruminations of the
mathematician de Morgan [28]. In 1897, the term stylometry
was coined by the historian of philosophy, Wincenty
Lutoslowski, as a catchall for a collection of statistical
techniques applied to questions of authorship and evolu-
tion of style in the literary arts (see, e.g., [32]). Today, the
quantification of writing style (perhaps more broadly
considered a subdiscipline of text classification) is a central
area of research in statistical learning (see, e.g., [10]).
Literary stylometry benefits from the fact that there is
generally some fundamental agreement on the basic atom
of analysis—the word. Even some musical stylometry
benefits from the use of the unit of the note (see, e.g., [26]
and also [36], which develops a stylometry of performance
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based on phrasing). However, in the case of visual media,
while all analysis ultimately begins with pixel information,
a much wider range of first-order analytic tools are used to
extract features (and create classifiers) that begin to get at
stylistic characteristics. Examples include box counting
analysis, Fourier spectra, wavelet spectra, brushstroke
analysis, etc. (see, e.g., [2], [13], [16], [20], [35], [46]). The
different approaches appear to articulate different stylistic
elements so that, in short, there is much less agreement on
the fundamental analytic elements in stylometry. As a
result, the search for and development of new analytic tools
for classification are ongoing.

It is in the spirit of this continuing effort that we
introduce a new mathematical tool, empirical mode decom-
position (EMD), for visual stylometry. EMD is a highly
adaptive scheme that serves as a powerful complement to
Fourier and wavelet transforms. The technique was
originally introduced in a 1D (time series) setting for the
purpose of analyzing the instantaneous frequency of signals
[11]. Since then, EMD has found many successful applica-
tions in a diverse collection of subjects, ranging from
biological and medical sciences to geology, astronomy,
engineering, and others [4], [6], [11], [12], [23], [33]. Of
particular relevance to this paper is the application of EMD
to the texture analysis and Chinese handwriting recognition
[43], [44], [45], [47]. This suggests the suitability of EMD for
the analysis of drawings.

In these varied examples, EMD shows itself to be an
effective tool for analysis in situations in which distinguish-
ing features cannot be captured fully by spectral or wavelet
techniques. EMD shares with wavelets the quality of being
a multiscale technique, but one in which information at
different scales is captured by the so-called intrinsic mode
functions (IMFs) that are constructed in an adaptive (i.e.,
data-driven) manner. The adaptive multiscale nature of
EMD analysis serves as a strong motivation for finding a
way to apply this framework to 2D data such as images.

As previously used, EMD seems intrinsically 1D,
depending as it does on the analysis of the so-called
“instantaneous frequencies” or Hilbert-Huang transforms [11]
of the IMFs, a concept that does not lend itself to a natural
higher dimensional generalization. However, a formulation
of EMD via iterative filtering solves this problem [22].
Iterative filtering EMD offers several advantages over
classical EMD in the context of visual stylometry: It is
easily applicable to higher dimensional data, it is stable
under small perturbations, it is completely flexible in
degrees of localization which may vary from artist to artist,
and it is easily implemented to capture directional features
(in arbitrary directions). The last two properties are crucial
for analyzing strokes (or “marks” as they are called in art
conservation and analysis).

The multiscale nature of iterative filtering EMD connects
it to several other techniques that have proved to be useful
for visual stylometry. This includes the fractal-based
authentication and multifractal analysis of the works of
Jackson Pollock (see, e.g., [38], [39], [40], as well as critiques
[17], [18]). Wavelet-based techniques have been successfully
applied to authenticating drawings of Pieter Bruegel the
Elder [19], [24] and to many of the approaches used in the
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“Van Gogh Project,” an effort directed toward the quanti-
fication of the style of Vincent van Gogh (see [16] for a
survey of the techniques used in the project). Recent
successful uses of adaptive methods in stylometry include
the technique of sparse coding [14].

Here, we demonstrate that the EMD framework, which is
a hybrid of multiscale and adaptive techniques, is useful in
the context of visual stylometry. We describe the methodol-
ogy behind EMD for 2D data and then show how it may be
used as the basis of a stylometric classifier by applying it to
two visual art data sets: one a well-known set of digitiza-
tions of drawings, all of which were at one time attributed
to the great Flemish artist Pieter Bruegel the Elder, and the
other a set of pen and ink drawings attributed to Rembrandt
van Rijn and his pupils. The latter is analyzed by digital
means for the first time in the present work. Our results
indicate that this relatively simple analytic tool produces a
structured decomposition of the images that provides
useful summary data for stylistic classification.

While we use the language of attribution (i.e., authentic
versus imitation) in our classification results, the goal in
stylometry research generally is to uncover analytic tools
that can be used to quantify stylistic similarity. In
comparison, in the best case, sincere judgments of
authenticity in general are multifaceted, taking into account
a wide spectrum of evidence, with the “proof” of
authenticity resembling much more a careful courtroom
argument than either a mathematical proof or even a purely
statistical argument (see, e.g., [7]). It is worth noting that
attribution, or at least the process of ascribing some
probability to a work of art that it was executed by a
particular artist, is but one use of the extraction of
quantitative characteristics of style. Other potential uses
include the analysis of the evolution of an artist’s style or a
process for a quantitative form of comparison of the
working styles of different authors. The successful con-
struction of a classifier built from the EMD output (or any
analysis mechanism) is a positive first step for demonstrat-
ing that the derived features might be useful for these more
nuanced investigations.

The paper is organized as follows: In Section 2, we
introduce the iterative filtering formulation of EMD. This
has a natural multidimensional extension whose applica-
tion to visual stylometry we address in Section 3. Section 4
contains the Bruegel analysis, using the data set examined
in [14] and [24] as well as some newly included drawings
related to the Bruegel corpus. In Section 5, we apply these
techniques to a set of drawings generally attributed to
Rembrandt van Rijn and his pupils. We close with a
summary and some ideas for future directions of this work.

2 EwmPIRICAL MODE DECOMPOSITION—
THE ITERATIVE FILTERING APPROACH

The original empirical mode decomposition for 1D data
(e.g., time-series data) is a highly adaptive method that
produces a multiscale decomposition of the data. It serves
as an alternative to the more traditional Fourier series and
wavelet decompositions and was motivated primarily by
the need for an effective way to analyze the instantaneous
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frequency of signals. Using the so-called sifting algorithm,
EMD decomposes the input signal into a trend function
plus a finite, often small, number of components called
intrinsic mode functions that oscillate about 0. For complete
details on EMD, IMFs, and the sifting algorithm, see [11].

The ability of EMD to create adaptive multiscale
decompositions suggests that a 2D form of it might be
useful for image classification generally and for visual
stylometry in particular. This is made possible via a
formulation of EMD via iferative filtering [22], which admits
a natural multidimensional generalization. The approach
differs from the classical EMD in its choice of the sifting
algorithm used to obtain the IMFs. In iterative filtering, we
begin with a convolution kernel A so that for an input signal
X(t) (for t € R or Z®) we define the associated convolution
operator

La(X) = AxX.

We generally pick A so that £4(X)(t) represents some kind
of moving average of X(¢). The new “sifting” operator is
now defined as

TaA(X) =X - La(X), (2.1)

and the associated sifting algorithm computes the limit of
iterating 7 4:
lim 77 (X).
For a suitable choice of the kernel A, the iteration will
converge (see below). To obtain the IMFs for X using the
sifting algorithm, we choose a suitable A; and apply the
sifting algorithm with 7 4, to obtain the first IMF:
Iy = lim 77 (X).

Subsequent IMFs are then obtained by an iterative
process: Having derived the first k — 1 IMFs (I1,...,I;_1),
we remove [, ..., I;_1 from the data and then choose a new
convolution kernel A, in order to produce

Ik = lim T;L(X — 11 — = Ik—l)-
n—0o0
The process stops when Y = X — I} —--- — I,,, has at most

one local maximum or local minimum. The essential
difference between the classical EMD and the iterative
filtering EMD lies with the choice for the “averaging”
operator. The iterative filtering EMD uses a filter £4 while
the classical EMD uses the average of two cubic splines that
envelop X(¢). The filter approach provides us with far more
flexibility and it is clearly not constrained by the dimen-
sionality of the data X.

Choice of kernel (mask). The multiscale nature of the
iterative filtering EMD derives from a judicious choice of
kernels. The A;, generally bear some relation to one another,
effectively defining the degree of “localization” of the
derived IMF I;,. We call these kernels the masks or footprints
of the EMD. Intuitively, if we choose A; to have very small
support, then only the finest details will be captured by the
IMF I,. With larger support for A;, we may capture
the lower frequency components of the signal in addition
to the high-frequency components. The same goes for other
masks and their associated IMFs. In this way, range of
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support of the masks for the EMD algorithm leads to a
multiscale decomposition of the signal X.

The ability to choose the masks, particularly in terms of
their sizes and “shapes” (i.e., the extent of their localization
or support), is one of the main advantages of the iterative
filtering EMD for the analysis of visual stylometry. The
classical EMD has no such flexibility. With iterative filtering
EMD, if two signals are decomposed using identical masks,
we can expect the kth IMFs for the two signals to capture
information in the same frequency range, allowing us to
compare “apples to apples.”

Convergence and the use of double averaging. As
mentioned, it is possible that the iteration of 7 4 may not
converge. For example, let 2 be a centrally symmetric set in
R? or Z" and let B(t) = ﬁ fort € Q and B(t) = 0 otherwise.
Then B * X represents the average filter over a neighborhood
in the shape of Q. If we simply choose £(X) = Bx* X and
T(X) = X — L(X), the iterative filtering does not converge.
However, if we take £(X) = B B x X, i.e., the double average
filter of B, then the iteration of 7 (X)= X — L(X) does
converge. This is true in general (see [22] as well as [42]).

Thus, in order to avoid questions of convergence, for
visual stylometry analysis we will use double average filters
exclusively. Let 2 be any centrally symmetric set in IR? or
Z‘. We shall use Dq to denote the double average kernel.
Note that for digital image analysis the domain is Z>.

3 EMD FOR STYLOMETRY ANALYSIS IN ART

As applied to visual stylometry, we see EMD providing an
effective tool for a structured multiscale decomposition of a
given artwork whose output can be used effectively for
classification. In the “EMD methodology,” we perform
several independent EMDs using masks of different shapes
to capture mark information pertaining to such character-
istics as strength, orientation, and spatial frequency. The
resulting information provides the basic data for the
construction of feature vectors useful for analysis and
classification.

In particular, we perform five different EMDs (corre-
sponding to different filter shapes) to obtain five kinds of
decompositions for an image. These five EMDs are
performed using double average masks Dg, where () varies
among the shapes of square, horizontal line segment,
vertical line segment, and two (perpendicular) diagonal
line segments. Each mask is centered at the origin. For each
EMD using a given shape, we vary the support thereby
obtaining IMFs at different scales.

For example, for the double average mask over squares,
we let ©; have support over a 5 x 5 square centered at the
origin. This yields I;, the first IMF. For I, we choose €2, to
have support over the 11 x 11 square centered at the origin.
In general, the length of a side of the support €, is one plus
twice that of Q;_;. The same goes for the other masks, i.e.,
for a line of a given orientation, the support of the mask at
scale k is of length two times the length used for scale k£ — 1,
plus one. Of course, in general the sizes can be adjusted
depending on the resolutions, sizes, and types of the
images. See Table 1 for the various initial masks.

Figs. 2 and 3 show the EMDs of a drawing by Pieter
Bruegel the Elder (see Fig. 1) using the square and vertical
masks. Each figure contains the first four IMFs. The smaller
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TABLE 1
The Initial EMD Masks
1 2 3 2 1
2 4 6 4 2
1
51 3 6 9 6 3
2 4 6 4 2
12 3 2 1
square
1
2
1 1
L1 2 3 2 1) il o3
2
1
horizontal line segment vertical line segment
1 1
2 2
1 1
g 3 ] 3
2 2
1 1

diagonal line segment diagonal line segment

sized masks capture finer details in the strokes and vice
versa. Thus, each EMD shares the common trait with a
wavelet decomposition that both are multiscale decomposi-
tions. By using a square mask, the EMD captures stroke
details in a uniform way. The line segment masks are
designed to capture stroke information in a given direction.
In general, a line mask is used to highlight strokes in the
orthogonal direction. For example, a horizontal line mask
will be used to capture vertical strokes.

Such information may be important for stylometric
analysis as different artists may exhibit preferences for
and subtle characteristics in certain directions. One advan-
tage of this EMD approach is its flexibility in choosing the
masks. If for instance we need more directional analysis of
strokes, we can easily add a line mask of a given direction.

The associated IMFs provide the underlying data for the
feature vectors associated with the images. From these,
classifiers can be designed to address questions pertaining
to visual stylometry. In the next section, we illustrate this
approach with a study of drawings, all of which at one time
have been attributed to Pieter Bruegel the Elder.

4 EMD STYLOMETRY ANALYSIS FOR BRUEGEL

In this section, we apply the EMD framework to a
stylometric analysis of a corpus of drawings by the great

Row = ,—r
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Fig. 2. The first four IMFs of the Bruegel drawing (Fig. 1) using square
masks.

Flemish artist Pieter Bruegel the Elder (1525-1569) and some
well-known imitations. Bruegel was famous in his lifetime
and thus it is very likely that his style would have been
imitated by aspiring artists for training purposes and
working artists for business purposes, both legitimate
(i.e., creating drawings and paintings in the style of
Bruegel) and illegitimate (e.g., creating works like Bruegel
and attempting to pass them off as executed by Bruegel).
There are still active debates regarding the authenticity of
various works attributed to Bruegel [30].

Our analysis consists of two parts. In the first, using an
EMD-based approach, we revisit the data set of images
analyzed in [14], [19], and [24]. In these studies, successful
approaches to classification were accomplished using
sparse coding [14] and quadrature mirror filters [19], [24].
We also achieve successful classification, but by a different
means, showing that strong linear classifiers can be
constructed from the EMD output. In the second part of
this section, we apply the EMD framework to an augmented
set of drawings that includes new drawings that at one time
had been attributed to Bruegel and produce evidence for
their attribution. The results indicate that the EMD-based
framework shows promise as an effective technique for
visual stylometry.

4.1 Analysis of the Bruegel and Bruegel-Like
Landscapes

Data preparation and EMD methodology. In the first part

of our study, we use an EMD approach on a previously

Fig. 1. Path through a Village, Pieter Bruegel the Elder, ca. 1552 [31,
No. 5].

Fig. 3. The first four IMFs of the Bruegel drawing (Fig. 1) using vertical
line masks.
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MMA Cat. No. Title Artist
3 Pastoral Landscape Bruegel
4 Mountain Landscape with Bruegel
Ridge and Valley
5 Path through a Village Bruegel
6 Mule Caravan on Hillside Bruegel
9 Mountain Landscape with Bruegel
Ridge and Travelers
11  Landscape with Saint Jerome  Bruegel
13 Italian Landscape Bruegel
20 Rest on the Flight into Egypt ~ Bruegel
7 Mule Caravan on Hillside -
120 Mountain Landscape with -
a River, Village, and Castle
121 Alpine Landscape -
125  Solicitudo Rustica -
127  Rocky Landscape with Castle  Savery

and a River

Fig. 4. Authentic (top) and imitations (bottom). The first column
corresponds to the New York Metropolitan Museum of Art catalog
number in [31]. Note that “Savery” refers to the contemporaneous
Flemish artist Jacob Savery (1545-1602). A dash indicates unknown
authorship.

analyzed [14], [19], [24] collection of 13 landscape drawings,
each of which had at one time been attributed to Bruegel.
It is now accepted that eight of these belong to Bruegel (i.e.,
are authentic) while the remaining five are believed (or are
known) to be imitations [31] (see Fig. 4).

More precisely, the initial data are given by digital scans
(at 2,400 dpi) of 35 mm color slides of the eight secure
drawings by Bruegel (catalog numbers 003, 004, 005, 006,
009, 011, 013, and 020) and five accepted Bruegel imitations
(catalog numbers 007, 120, 121, 125, and 127, see [31]).1 The
scans are then converted to 1 byte grayscale images so that
the shades range from 0 (black) through 255 (white). For the
purpose of homogeneity, we extract a central 2,000 x 2,000
pixel square from each image. Note that the original
drawings were nearly identical in size. To obtain enough
samples for classification, each 2,000 x 2,000 pixel image is
further partitioned into 25 400 x 400 pixel subimages or
“samples,” giving us in total 200 samples of Bruegel and
125 samples of non-Bruegel.

EMD is applied to every sample and the first three IMFs
are obtained for each of the five mask shapes shown in
Table 1. The initial size of these masks is 5 x 5 pixels and
successive sizes (localizations) are produced by doubling
the previous size and adding one. The initial masks are
shown in Table 1. Note that they are simply the double
averages of standard moving average filters. Given three
IMFs for each shape, we obtain 15 IMFs per sample.

Feature vector construction. A single feature vector is
constructed for each of the 400 x 400 pixel samples. The
feature vector entries encode a collection of summary
statistics based on the sample’s 15 IMFs and is formed as
follows:

Step 1. To take into account variations within the sample
image, we divide each of the 15 IMFs of the sample into an
8 x 8 grid of 50 x 50 pixel “patches.” We shall label these

1. Slides were provided courtesy of the New York Metropolitan Museum
of Art.
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patches I; 1{1 with 1 < k,1 < 8 indexing the patch location and
1<5< 15 indexing the IMF.

Step 2. For a patch I}, we compute the following nine
summary statistics of the pixel values:

mean,
standard deviation,

skewness,

kurtosis,

percentage of “outlier pixels” defined as those that
are greater than the mean plus the standard
deviation,

mean of the outlier pixels,

standard deviation of the outlier pixels,

skewness of the outlier pixels,

9. kurtosis of the outlier pixels.

ARl

S

These nine statistics together give us a 9D vector u{,“l.
Grouping together w;, for each 1 < j <15 yields a 135D
vector

12 15
Uiy = [uk,l, Uppy - ,ukyl],

associated with each patch. Note that the statistics we
compute are motivated by earlier work. The basic summary
statistics (the first four moments) are the same statistics
computed in [24] from the wavelet coefficients derived from
the samples. The use of the “outlier” statistics is motivated
by their successful application in the EMD-based classifica-
tion of physiological data [27].

From the 64 vectors Uy; where 1 < k,I < 8, we construct
three 135D vectors Vi, V5, V5 to serve as an initial summary
of the sample. The vector V; is simply the mean of the
vectors Uy; over 1 < k,I < 8. The vector V5 is the mean of
the top 50 percent of the values in each entry. The vector V3
is the mean of the top quartile (top 25 percent) of the values
in each entry. Finally, the feature vector of the sample is the
405D vector W = [V;, V3, V). Since each drawing is divided
into 25 samples, each drawing is now associated with a
“cloud” of 25 points in the 405D space.

Dimensionality reduction and proof-of-concept classi-
fication. In order to evaluate the features we extracted from
the IMFs from each of the Bruegel and non-Bruegel
drawings, we take advantage of the ground-truth knowledge
we have about the attribution of the drawings considered.
Ultimately, with whatever features we extract from these
images, we seek to classify them as either authentic or not
authentic, and to have confidence in these features we must
first evaluate their efficacy on data with known attributions.
In this sense, classifying a drawing as “authentic” indicates
that the features are statistically similar to those of a secure
set—indeed, this is effectively what the connoisseur also
means. In order to do this, we perform a leave-one-out cross-
validation experiment in which we consider all but one set of
Bruegel drawing’s samples and attempt to classify the held-
out Bruegel using a support vector machine (SVM) trained on
the remaining samples (see [9] for a good survey of these
tools and techniques). Note that, because we do not wish to
assume any stylistic similarity between the non-Bruegel
drawings, we consider the classification of the held-out
Bruegel with respect to the remaining authentic Bruegel
drawings and each non-Bruegel individually since there is no
art historical information that indicates that these imitations
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TABLE 2
Fraction of Correctly Identified Samples (Out of a Total of 25) for
Each Held-Out Authentic Bruegel Drawing (Columns) with
Respect to the Classifier Trained on the Remaining Bruegel
Drawings and Each Non-Bruegel Individually (Rows)

Held-out drawing

| 003 004 005 006 009 011 013 020
00710 1.0 10 1.0 064 076 10 092
120 1.0 1.0 10 1.0 1.0 10 096 1.0

Non-Bruegel - 15117 10 10 09 1.0 092 1.0 1.0

125076 1.0 10 1.0 092 10 1.0 1.0
12710 10 10 1.0 10 1.0 092 1.0

were executed by the same hand. Indeed, evidence suggests
that they were executed by several different artists attempt-
ing to imitate the style of Bruegel.

The procedure is as follows:

Step 1 (Hold out an authentic Bruegel drawing). We
begin with eight authentic drawings and on the ithiteration of
the experiment we hold out all 25 samples from drawing i.

Step 2 (SVM via RFE). Using the method of recursive
feature elimination (RFE, see, e.g., [8]), we train SVMs to
distinguish the remaining authentic drawings from each non-
Bruegel. Since we have five non-Bruegel drawings, we train
five classifiers in each iteration of the experiment. This leaves
us with 175 authentic samples (7 drawings x 25 samples each)
grouped as Class I and 25 samples from the non-Bruegel
grouped as Class II, per classifier. We then construct a
classifier using an SVM to separate Classes I and 1II in the
original 405D space via a linear decision boundary (hyper-
plane) C;. We then remove variables that do not strongly
contribute to classification by eliminating the half of the
variables that have the lowest weight in this preliminary
classifier. An SVM is again trained on the remaining half of
the variables to produce a linear classifier C. This process of
eliminating variables is repeated until no more than 10 vari-
ables remain, leaving us with a classifier that utilizes at most
the 10 variables most important for distinguishing between
the two classes.

For robustness, we repeat this process 100 times for each
non-Bruegel drawing, obtaining each time a classifier with
at most 10 variables. From these classifiers, we then
determine the set of variables that appeared at least six
times among the 100 replicates. Note that, as before, we
consider each non-Bruegel separately, so we retain a set of
“optimal” variables chosen to distinguish between each
non-Bruegel and the remaining authentic drawings.

Step 3 (Testing on held-out images). Once the optimal
set of variables has been chosen to distinguish the authentic
Bruegel drawings from each non-Bruegel (with the
ith drawing held out), we train an SVM using only the
optimal variables and measure the performance of this
classifier in correctly identifying the held-out Bruegel as
authentic. Table 2 shows the fraction of correctly identified
samples for each held-out drawing with respect to the
classifier trained on the remaining Bruegel drawings and
each non-Bruegel drawing.

In order to say that a held-out Bruegel drawing was
correctly classified as authentic, it should be classified as such
with respect to each of the non-Bruegel drawings, meaning
that a large fraction of its samples are correctly classified. In
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TABLE 3
Fraction of Correctly Identified Samples (Out of a Total of 25) for
Each Held-Out Authentic Bruegel Drawing (Columns) with
Respect to the Classifier Trained on the Remaining Bruegel
Drawings and Each Non-Bruegel Individually (Rows)
Using QMF Features

Held-out drawing
005 006 009 011
007 | 1.0 097 088 1.0 078 0.11
Non-Bruegel 120 (0.88 098 095 094 1.0 092 10 098
12110 098 10 1.0 092 0.81 098 098
125098 095 091 088 098 10 10 1.0
127 1.0 1.0 10 0.69 098 098 095 0.75

013 020
097 1.0

| 003 004

Table 2, the results of these experiments show that the held-
out drawings were correctly identified as authentic with a
high rate of success. This result establishes that the EMD
features provide enough information to distinguish between
authentic and imitation Bruegel drawings.

In order to establish the significance of these results, we
also compare them to two previous methods for extracting
features related to artistic style, in particular ones that were
also used to examine the same set of Bruegel and imitation
drawings considered here. Table 3 summarizes the results
of using statistics derived from QMF decompositions of the
Bruegel drawings [24], with classification via RFE and
SVMs performed in exactly the same manner as for the
EMD statistics. Results were generally comparable between
the two methods, and indeed both methods exhibited some
of the lowest accuracy rates for correctly identifying
drawings 009 and 011 as authentic Bruegels. On the other
hand, it is worth pointing out that had we (for example)
used a threshold of 50 percent for classification, the EMD
approach would have unanimously classified 011 correctly,
which was not the case for the QMF features. Also, in seven
cases, EMD-based classifiers had an accuracy that exceeded
that of the QMF-based classifier by at least 0.1 (a highly
significant event in many cases), whereas the accuracy of the
QMF-based classifier exceeded that of the EMD-based on
only twice by such an amount. Nevertheless, both approaches
produce feature vectors that work well on this data set.
Interestingly, the sparse coding classification approach of [13]
also failed to correctly identify drawing 011, and in general
accuracy rates were somewhat lower using sparse coding
features as opposed to using the EMD features presented
here. This comparison establishes the utility of the EMD
features in that they provide results at least as good or
better than those obtained with previous methods on this
data set.

Analysis of the new corpus of drawings. The classifiers
we have built above are based on analyzing the corpus of
drawings previously analyzed in [14], [19], and [24]. In
effect, this is a proof of concept that the EMD-based
approach may be of use for visual stylometry.

As a result, it is of interest to use these classifiers to
establish attribution for other drawings from the Bruegel
corpus since attributions sometimes change as new infor-
mation, both about the artist as well as the works, comes to
light. Here, we construct a classifier in the same manner as
before to examine an additional set of drawings (not
previously analyzed by “digital” techniques) with varying
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TABLE 4
Fraction of Correctly Identified Samples (Out of a Total of 25) for
Each Drawing from the New Corpus (Columns) with Respect to
the Classifier Trained on the Authentic Bruegel Drawings and
Each Non-Bruegel Individually (Rows)

New corpus drawing

[ 002 010 012 015 017 018 019
007 10.84 1.0 0.56 0.68 0.56 0.80 1.0
1201 1.0 10 088 1.0 10 10 1.0

Non-Bruegel 151110 10 10 10 10 10 10

1251096 044 1.0 1.0 1.0 044 096
127110 10 10 10 10 10 1.0

histories that, as of today, are attributed to Bruegel. These
drawings correspond to the New York Metropolitan
Museum of Art (MMA) catalog numbers Nos. 002, 010,
012, 015, 017, 018, and 019, [31].

Itis important to emphasize that our interest in examining
these works (and indeed all of the works that we analyze) is
not to simply provide a determination of authenticity, but
rather to also say something about the stylistic characteristics
of the works of art. In particular, it is sensible to ask to what
extent Bruegel drawings share commonalities with imita-
tions, or what constitutes the stylistic differences between
two known authentic drawings? Ultimately, once we have a
framework for studying stylistic differences, we can begin to
ask questions that are broader than the authentication
question. We can analyze the evolution of an artist’s style
or understand what role a particular artist played in the
evolution of a stylistic movement. We can even begin to
examine the stylistic relationships between works of art
separated by thousands of years.

In analyzing this new corpus of drawings, we proceed
according to the methodology described above. Each of the
new drawings is divided into 25 samples of 400 x 400 pixels
in the original 405D feature space. Once again, we begin by
creating a classifier using RFE, except that we consider all
200 of the authentic Bruegel samples as Class 1 and consider
each of the non-Bruegel drawings individually as Class 2,
building each time a classifier to distinguish between these
two classes. As before, we eliminate half of the variables
until we have at most 10 remaining. We repeat this
procedure 100 times and select as the set of optimal
variables those that were present in at least six of the
100 classifiers for each non-Bruegel drawing. Once this set
of variables has been obtained, we build five classifiers, one
for distinguishing between each non-Bruegel drawing and
the entire set of authentic drawings.

We map the new samples into each of the lower-
dimensional feature spaces determined by the optimal set
of variables for each classifier, and then classify those
samples according to each of the classifiers that have been
learned. Table 4 shows the fraction of test samples
identified as authentic by each classifier trained on a single
non-Bruegel drawing’s samples. Specifically, this table
reports the fraction of values of the decision function f;(v) >
0 for v, a sample from a drawing from the new corpus, and
fi, the classifier trained to distinguish between the authentic
drawings and the ith non-Bruegel drawing.

Because linear support vectors machines do not guarantee
separability between classes (since such separation may not
exist in the feature space considered), it is useful to approach
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TABLE 5
Mean Posterior Probability of Belonging to the Authentic Class
for Samples from Each Drawing from the New Corpus
(Columns) with Respect to the Classifier Trained on the
Authentic Bruegel Drawings
and Each Non-Bruegel Individually (Rows)

New corpus drawin
|002 010 012 015 017 018 019
007]0.87 0.95 0.53 0.73 0.60 0.79 0.98
120{0.99 0.99 0.90 0.99 0.99 0.99 0.99
121{0.99 0.99 0.99 0.99 0.99 0.97 0.99
125(0.96 0.48 0.99 0.96 0.95 0.51 0.94
127]0.99 0.97 0.92 0.99 0.96 0.99 0.99

Non-Bruegel

classification from a probabilistic perspective. In particular,
we seek a probabilistic method that takes into account the
distribution of values of the decision functions f; for the
training data. Using the class conditional distributions
P(f;(x)|Class = 1) and P(f;(y)|Class =2), i =1,...,5, for
all training datapoints « in Class 1 (authentic drawings) and
datapoints y in Class 2 (non-Bruegel drawings), we can, via
Bayes’ rule, infer an estimate of the posterior distribution
over classes [34], [21]

P(Class = 1| f;(v)) « P(fi(v)|Class = 1)P(Class = 1),

where, in each case, the prior probability of class member-
ship is given simply as the number of training datapoints
appearing in that class, and the class-conditional distribu-
tions are estimated directly from the training examples. The
particular advantage of using this approach to classification
is that it takes the distribution of decision values for the
training data into account (since, in general, there may be
misclassified training data) in determining what decision
function values constitute high probability of belonging to
one class or another. The posterior distribution over class
membership is estimated using a sigmoid function (see [34]
for details), with parameters A;, B; estimated using the
training data

1
1+ exp(A; fi(v) + B;)’

Using this methodology, we estimated the posterior
probability of the test images with respect to each of the
three classifiers. We let the posterior probability of class
membership for a particular unknown be equal to the mean
of the distribution over posterior probabilities for each of
the 25 samples from that image for each classifier f;:

P(Class = 1| f;(v))

1 .
%Z:P(C’lass =1)fi(v;)), j=1,...,25,

for each image v from the new corpus. Table 5 shows the
average probability of being authentic for each test image
with respect to each of the five classifiers.

This analysis is of course reflective of statistical similarity
between the unknowns and the training set—indeed, an
unknown image should only be considered definitively
authentic if it is highly dissimilar to all of the known non-
Bruegels (whose similarity to the authentic drawings is
captured by the five classifiers fi, ..., f5). By this reasoning,
if we consider the fraction of correctly identified samples
for each drawing from the new corpus, we do not have
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sufficient evidence to attribute the drawings with catalog
numbers 10, 12, and 18 to Bruegel since for each of these
drawings a significant fraction of samples was not correctly
identified. The probabilistic results indicate that the same
group of drawings could be considered non-Bruegel since
they had a relatively weak probability of belonging to the
authentic group of drawings according to one or more
classifiers. Typically, however, we do not seek to provide a
binary classification (i.e., authentic/inauthentic) of these
drawings because of the lack of practicality of such a
judgment. Art historians consider a number of factors when
determining the authenticity of a work of art, and it is
generally more useful to provide a measure of authenticity
(such as a probability), rather than a strict classification.
Furthermore, a probabilistic approach allows us to measure
in some sense the overall stylistic similarity between
drawings, which admits a significantly more nuanced
interpretation. For example, although a particular drawing
might not be considered authentic by this methodology,
high similarity to certain drawings indicates that it
possesses similar stylistic tendencies.

5 ANALYSIS OF REMBRANDT DRAWINGS

Having validated the use of EMD features both by
comparing them with previous techniques as well as by
the generally high accuracy rates obtained on the ground-
truth Bruegel data set, we examined whether EMD-based
features might prove useful in analyzing a very different set
of drawings; a collection of pen and ink works historically
attributed to Rembrandt van Rijn (1606-1669) and his pupils
and imitators. The general problem of distinguishing the
works of Rembrandt and his pupils has a long history (see,
e.g., [3]). The corpus of drawings considered here [37]
includes in total 20 drawings (see Fig. 5). Of these, the first
11 are now assigned to Rembrandt, two are now given to
Carel Fabritius (1622-1654), and five drawings have been
identified as the work of various students and imitators of
the master. Finally, two drawings do not have secure
attribution. It is worth noting that these drawings are quite
different from those in the Bruegel corpus—they are drawn
more freely, with less precision, and with much more
variation in mark width and length and are in a different
medium.

The drawings were preprocessed in exactly the same way
as in the Bruegel experiments, and features were extracted
from these drawings in an identical manner. Unlike in the
case of the Bruegel drawings, the Rembrandt and Rembrandt
imitation drawings were of various sizes so that the number
of data points per drawing was not consistent. In every other
way, the feature vectors extracted from the patches were the
same as in the initial experiments.

We began by attempting to replicate the SVM with RFE
procedure used in the Bruegel experiments, but this
classification scheme yielded poor results on the held-out
testing data. In addition, the linear SVM classification
boundary was typically unreliable for correctly identifying
negative training exemplars (i.e., non-Rembrandt data
points).

After extracting features for all drawings, we embedded
the drawings in 22 dimensions via classical multidimensional
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No. Cat. No. Title Artist

03 B95 Jacob lamenting the sight R
of Josef’s blood-stained coat

04 B97 Christ carrying the cross R

07 Bl64 Adam and Eve R

09 B519 The return of the prodigal son

10 B541 Jacob and his sons R

12 B606 Esau selling his birthright to R
Jacob

15 B876 Josef being sold R

16 B887 Daniel in the lions” den R

17 B912 Josef interpreting the prisoners’ R
dream

18 B947 David and Nathan R

20 B AIll The dismissal of Hagar R

01 B66 Temptation of Christ F1

02 B8O Josef interpreting the prisoners’ F1
dream

05 B108 Christ on the cross E

08 * Adoration of the shepherds Fa

11 B564 Esau selling his birthright to B
Jacob

14 B491 Eliezer and Rebecca at the well Fa

19 B948 David and Nathan D

06 B148 Mattathias at Modin ?

13 B652 Christ on the cross ?

Fig. 5. “Rembrandt” set (courtesy of P. Schatborn). Authentic (top) and
imitations (bottom). The first column corresponds to the numbering in
Schatborn’s list and is the numbering used in the tables in this section.
The second column corresponds generally to the Benesch catalog
raisoné [1], with catalog number BXXX. Label B A11 indicates an unsure
attribution to Rembrandt, at Berlin, Kupferstichkabinett; * indicates not in
[1], with unknown attribution, at Amsterdam, Rijksmuseum. “R” denotes
R. van Rijn (1606-1669), “Fa” denotes C. Fabritius (1622-1654), “FI’
denotes Govert Flinck (1615-1660), “E” denotes G. van den Eeckhout
(1621-1674), “B” denotes F. Bol (1616-1680), “D” denotes W. Drost
(1633-1659), and “?” indicates unknown attribution.

scaling (MDS). This dimensionality was chosen because it
accounts for more then 99 percent of the total variance in
the (embedded) data. Having embedded the points in
such a manner, we ran the leave-one-out cross-validation
experiments again, learning the parameters of a linear
SVM (without using RFE to select features since dimen-
sionality reduction had already been performed). In each
iteration of the experiment, we held out all samples from
a particular known Rembrandt drawing and trained on
the rest with respect to a single non-Rembrandt drawing.
As with the Bruegel drawings, this step was replicated for
all non-Rembrandt drawings. Only those (known authen-
tic) drawings whose samples were judged to be authentic
sufficiently often were said to be authentic. Tables 6 and 7
show the results for this experiment.

Tables 6 and 7 indicate that two drawings (numbers 09
and 15) were not judged similar enough to other authentic
drawings to be considered “authentic” for our purposes.
The failure of these drawings to be correctly identified
may stem from stylistic variations present in them that are
not found in the other authentic drawings or simply
because some of the imitation drawings were particularly
successful at capturing certain aspects of the master’s style.
It is also worth noting that, while the authentic drawing
numbered 04 failed to be judged as truly authentic
according to the usual SVM decision criterion (i.e., that
f(v) >0, for a sample v, given classifier f) with respect to
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TABLE 6
Fraction of Authentic Rembrandt Samples Correctly Identified
as Rembrandt with Respect to the Classifier Trained
on Each Non-Rembrandt Drawing, Respectively

Authentic drawing
|03 04 07 09 10 12
01]1.00 0.18 1.00 1.00 1.00 1.00
02{1.00 1.00 1.00 1.00 1.00 1.00
05]1.00 1.00 1.00 1.00 1.00 1.00
08]1.00 1.00 1.00 1.00 1.00 1.00
11|1.00 1.00 1.00 0.38 1.00 1.00
14|1.00 1.00 1.00 0.00 1.00 1.00
19]1.00 1.00 1.00 1.00 1.00 1.00
Authentic drawing
|15 16 17 18 20
01]0.00 1.00 1.00 1.00 1.00
02{0.00 1.00 1.00 1.00 1.00
05/1.00 1.00 1.00 1.00 1.00
08(0.00 1.00 1.00 1.00 1.00
11|1.00 1.00 1.00 1.00 1.00
14|1.00 1.00 1.00 1.00 1.00
19/1.00 1.00 1.00 1.00 1.00

Non-Rembrandt

Non-Rembrandt

non-Rembrandts 01, when performing classification in a
probabilistic manner (shown in Table 7), the posterior
probability that drawing 04 was authentic, given the
classifier trained against non-Rembrandt number 01, was
0.63, a value large enough to safely consider this drawing
authentic. This example highlights the usefulness of a
probabilistic approach to classification in this context since
the actual distribution of classifier values may vary
significantly from what is expected because we use SVMs
that allow for training points to be misclassified.

Although two genuine Rembrandt drawings were not
securely attributed to the master using EMD features, the
success of this method in correctly identifying 9 of
11 drawings suggests that EMD does provide a useful
means of describing artistic style. With this in mind, we
performed the leave-one-out cross-validation experiments
again, this time excluding from our analysis drawings 09
and 15. Despite excluding these drawings, all other

TABLE 7
Mean Posterior Probability of Belonging to the Authentic Class
for Samples from Each Authentic Rembrandt Drawing
with Respect to the Classifier Trained
on Each Non-Rembrandt Individually

Authentic drawing
03 04 07 09 10 12
01{1.00 0.63 1.00 1.00 1.00 1.00
02{0.99 1.00 1.00 1.00 1.00 0.99
05(0.94 0.98 1.00 0.95 0.95 1.00
08{1.00 1.00 1.00 1.00 1.00 0.90
110.95 0.98 1.00 0.69 0.96 0.99
1410.83 1.00 1.00 0.32 1.00 0.99
19|1.00 0.99 1.00 0.84 0.99 1.00
Authentic drawing
15 16 17 18 20
01{0.49 1.00 0.89 0.99 1.00
02{0.67 0.99 0.98 1.00 1.00
05{0.99 0.99 1.00 1.00 1.00
08]0.22 0.99 0.95 0.99 1.00
11/1.00 1.00 1.00 0.99 1.00
1410.97 1.00 1.00 1.00 0.97
19(1.00 1.00 0.98 1.00 0.98

Non-Rembrandt

Non-Rembrandt
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TABLE 8
Fraction of Samples from Questionable Drawings Identified as
Authentic with Respect to Each Classifier Trained
on All Secure Authentic Samples and Each Non-Rembrandt
Individually Drawing 13 Is Judged to Be Authentic
by This Method, While Drawing 06 Is Not

Questionable drawing

Non-Rembrandt

authentic drawings were judged as truly authentic with
perfect accuracy with respect to the seven classifiers trained
in each iteration of the experiment. More to the point, what
this indicates is that the EMD-based features do capture
basic multiscale commonalities within the drawings by
Rembrandt that generally distinguish his style from that of
other artists in the data set.

Analysis of questionable drawings. Having confirmed
that the set of nine authentic drawings is accurately classified
using EMD features, we build a linear SVM classifier that
discriminates between the entire set of authentic drawings
and each non-Rembrandt individually. We then use this to
judge whether the two questionable drawings (numbers 06
and 13) are authentic or inauthentic. Current art historical
opinion is that these drawings are not genuine Rembrandt
drawings (Peter Schatborn, personal communication). Our
analysis seeks to provide evidence—one way or the other—of
these drawings’ authenticity or lack thereof. Tables 8 and 9
show the fraction of correctly identified patches and the mean
posterior probability of patches being authentic, respectively.

These results indicate that drawing 06 is not an authentic
Rembrandt drawing, confirming art historical analysis.
Indeed, this drawing shares stylistic qualities with authentic
drawing 09 (in particular, the use of ink wash shading),
which was excluded from this part of the analysis because it
failed to be correctly identified as authentic. Details of these
drawings are shown in Fig. 6. This may partially account for
this drawing’s exclusion as authentic; however, even when
drawing 09 was included in the training set, drawing 06
was still rejected as authentic (results not shown).

Interestingly, drawing 13 was in fact judged to be an
authentic Rembrandt drawing according to our method.

TABLE 9
Mean Posterior Probability of Belonging to the Authentic Class
for Samples from Each Questionable Drawing with Respect to
the Classifier Trained on Each Non-Rembrandt Individually

Questionable drawing

06 13
01 | 099 0.9
02 | 099 0.99
05 | 099 0.98
Non-Rembrandt 08 | 099 099
11 | 038 099
14 | 0.67 0.99
19 | 0.21  0.99
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Fig. 6. Two details from authentic Rembrandt (drawing 09, top), The
Return of the Prodigal Son, and questionable work (drawing 06, bottom),
Mattathias at Modin, highlighting the similarity of the drawings in their
use of ink wash.

The quantitative similarity of this drawing to all of the
secure authentic drawings suggests that closer examination
of the drawing’s style, its materials, and its provenance may
ultimately reveal it to in fact be a genuine Rembrandt.

6 CONCLUSION

We present here a novel adaptation of empirical mode
decomposition for image analysis, based on iterative
convolution, for the analysis of artistic style (visual
stylometry) in the drawings of Pieter Bruegel the Elder
and Rembrandt van Rijn. In particular, we show that the
statistics of the derived intrinsic mode functions can be
used to construct effective linear classifiers for a test set of
drawings by each artist. We have shown that the marginal
statistics derived from the IMFs as well as marginals
derived from the outliers provide useful representations
of the stylistic regularities present in the works of these
artists; in particular, they have performance that is at least
as good as classifiers already proven to be effective on the
previously analyzed Bruegel images. This brings a new
approach to the problem of visual stylometry. Using
classifiers based on these features, we supplied evidence
toward attributions of works whose attributions have
shifted over time. The flexibility of this approach and this
first largely successful application suggest that the EMD
approach is a useful technique for visual stylometry and
may also be useful for image classification in general. In
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future work, we will study in more detail the aspects of
style captured by EMD, as well as the application of this
method to different types of visual artistic media, such as
paintings. We believe that mathematical analyses of style
such as the one presented here will become increasingly
important in assisting technical art historians and conser-
vators to resolve outstanding questions of authenticity and
attribution by providing objective analytical techniques that
can be used to supplement current methods.
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