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ABSTRACT

We investigate a malaria transmission model with SEIR (susceptible-
exposed-infected-recovered) classes for the human population, SEI
(susceptible-exposed-infected) classes for the wild mosquitoes and an addi-
tional class for the sterile mosquitoes. The basic reproduction number of
the disease transmission is obtained, and a release threshold of the ster-
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ile mosquitoes is provided. We formulate an optimal control problem in
which the goal is to minimize both the infected human populations and the
cost to implement two control strategies: the release of sterile mosquitoes
and the usage of insecticide-treated nets to reduce the malaria transmis-
sion. Adjoint equations are derived, and the characterization of the optimal
controls is established. Finally, we quantify the effectiveness of the two
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interventions aimed at limiting the spread of malaria transmission. A com-
bination of both strategies leads to more rapid elimination of the wild
mosquito population that can suppress malaria transmission. Numerical
simulations are provided to illustrate the results.

1. Introduction

Malaria is a mosquito-borne disease. It is still a leading cause of death and disease in many developing
countries [1-5]. In 2019, an estimated 229 million cases of malaria occurred worldwide and 409,000
people died, mostly infection occurring in the African Region [5]. To prevent malaria transmission
and infection, various control approaches have been explored. Malaria infection has been somewhat
lessened in many regions through vector-targeted intervention such as insecticide-treated bed nets
(ITNs) and indoor residual sprays (IRS). Since massive and long-time spraying of insecticide has
commonly been chemically based, the effectiveness of these measures has been hampered by the
appearance of insecticide-resistant vector strains [6-8]. The recently released World Malaria Report
[5] on insecticide resistance in malaria vectors for 2010-2019 showed that resistance to the commonly
used insecticide classes pyretganochlorines, carbamates and organophosphates is widespread in all
major malaria vectors across the WHO regions of Africa, the Americas, South-East Asia, the Eastern
Mediterranean and the Western pacific. In 2019, the first malaria vaccine was rolled out in Africa, but
it only reduced malaria cases in young children with limited efficacy.

Currently, biological control methods of mosquito populations, including the genetic approaches
[9-11], sterile insect technique (SIT) [12] and the Wolbachia control techniques [13-15], have been
applied in the laboratories or fields. To explore the impact and effectiveness of these biological con-
trol measures, many novel mathematical models have been formulated and analyzed. Modeling of the
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genetically altered or transgenic mosquitoes has provided a potentially weapon to fight the mosquito-
borne diseases [16-18]. Modeling of the releasing of Wolbachia-infected mosquitoes and studying
the mosquitoes suppression effects have provided applicable guidance [19-21]. SIT [12] is an envi-
ronmentally friendly alternative strategy, which has been gaining renewed interest for the control
of mosquito populations. The technique involves the massive release of male mosquitoes (sterilized
through radiological or chemical means) into the environment to mate with wild mosquitoes in the
environment. Female mosquitoes mating successfully with a sterile male will either not reproduce, or
produce eggs that will not hatch. Recently, mathematical models show that it is useful and effective
to reduce or suppress a wild mosquito population [11,22-30]. By applying different releasing strate-
gies of sterile mosquitoes, including constant releases, proportional releases, periodic and impulsive
releases, mathematical modeling analysis further shows the complex and interesting dynamics of the
interactive mosquito populations [27,31-35].

There is still much work to be completed in the search for biological control of mosquitoes and
preventing malaria infection. For example, how to model the malaria transmission coupling with the
releases of sterile mosquitoes is not fully understood [18,36]. Using multiple strategies simultaneously
has proved remarkably effective at reducing malaria burden [37], and part of the recent reduction in
malaria burden worldwide can be attributed to the integrated use of treatment and vector control
strategies [38,39]. Optimal control theory has been applied to explore malaria control strategies with
releasing SIT [26,29,40-43]. For example, Khamis et al. [41] investigated the optimal control problem
for malaria by using drug therapy and releasing modified mosquitoes. Their results show that it is
the most effective method against malaria transmission by the combination of both vector control
and drug therapies. Fister et al. [26] studied an optimal control problem for sterile type mosquito
population with diffusion. They show that the release effect of the sterile mosquitoes is optimal by
the combination of both strategies: control of the fecundity (using larvicide) and the release of the
sterile mosquitoes. If larvicide is allowed, the control effect of wild mosquito populations can arrive at
a maximal level. Multerer et al. [29] further investigated the optimal release problem on the impact of
releasing sterile male mosquitoes to the wild mosquito population by using a spatial-temporal model
on an island. The optimal solutions of the system for a single location are identified and the optimal
releasing strategies of the sterile male mosquitoes are given. However, authors seldom investigate the
optimal control strategies of malaria transmission by the combination of SIT and insecticide-treated
bed nets (ITN).

In this paper, we formulate a malaria transmission model with SEIR (susceptible-exposed-
infected-recovered) classes for human population, SEI (susceptible-exposed-infected) classes for the
wild mosquitoes, coupling with the releasing of the sterile mosquito populations as our baseline model
in Section 2. We derive the basic reproduction number Ry for the baseline model and analyze the
existence of the endemic equilibria as the reproductive number exceeds one. Based on the baseline
malaria model, we then formulate an optimal control problem in which the goal is to minimize both
the infected human populations and the cost to implement two control strategies: the release of ster-
ile mosquitoes (SIT) and the usage of insecticide-treated nets (ITN) in Section 3. Adjoint equations
are derived and the characterization of the optimal controls are established. Finally, we quantify the
effectiveness of the two interventions aimed at limiting the spread of malaria. Numerical simulations
are provided to illustrate the results. We simulated human, wild and sterile mosquitoes population
dynamics using two controls (both SIT and ITN), and using a single control (either SIT or ITN).
We found the optimal control strategies under each circumstance. It turns out the combination of
both strategies leads to more rapid elimination of the wild mosquito population, which can suppress
the malaria transmission in a cost-effective way.

2. Malaria transmission model

We consider human and mosquito populations in a closed, homogeneous environment using a sys-
tem of differential equations. The human population of size Nj,(¢) is divided into four compartments:
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susceptible Sy (#), exposed Ej(t), infected I (), and recovered from clinical malaria Ry (t), where
Ny, (t) = Sp(t) + Ep(t) + I(¢) + Ry(t). Due to the facts that only female mosquitoes bite people and
transmit malaria, the total female mosquitoes population N, () is split into susceptible S, (¢), latent
E,(t) and infected mosquitoes I,,(¢). Let Ny(t) = S,(t) + E,(t) + I,(¢), and Sg(¢) be the number of
sterile mosquitoes at time ¢. Note the mosquito lifespan is usually shorter than their infection period,
no recovered mosquitoes are included. The system of ordinary differential equations in system (1)
describes the disease dynamics in humans, wild mosquitoes and the releasing sterile mosquitoes. As in
[44,45], we assume that f;, (N},) = p1p + m2nNp stands for the per capita density-dependent death and
emigration rate of humans, f,(N, + Sg) = w1y + p2v(Ny + Sg), fo(Ny + Sg) = i1 + pag(Ny + Sg),
are, the per capita density-dependent death rate for wild and sterile mosquitoes, respectively, with
Mj> 2j» (j = h, v, g) denoting, respectively, the density-independent and density dependent death
rate for humans. As in [12,23], we assume that wild-type female mosquitoes are assumed to mate
proportionately to their relative abundance, where the number of the male mosquitoes is equal to
the number of females at any moment. The intrinsic growth rate of the wild mosquito population
given by

N,.
mM+%V

As in [44], we define the force of infection from mosquitoes to humans, 1;(¢), as the product of
the number of mosquito bites that one human has per unit time by, (Nj, N,), the probability of disease
transmission from the mosquito to the human fy,,, and the probability that the mosquito is infectious,
I,/N,. Immunity is one of the important inter-related factors for transmission of malaria in a popu-
lation. The neglect of immunity led to unrealistic predictions [46]. Dietz et al. [47] first considered
seven compartments of human incorporation of immunity in the malaria model. Their model has
shown a good fit to the data obtained from northern Nigeria [47]. In a similar theme, the importance
of incorporation of immunity in malaria models is aptly emphasized and applied by some authors
[44,45,48]. Chitnis et al. [44,45] have addressed that ‘the recovered humans have some immunity to
malaria and do not get clinically ill, but they still harbor low levels of parasite in their blood streams
and can pass the infection to mosquitoes’. Applying the similar ideas in [44,45], we define the force
of infection from humans to mosquitoes, 1, (t), as the sum of the force of infection from infectious
humans and from recovered humans. These are defined as the number of human bites one mosquito
has per unit time b, (Nj, N,), the probability of disease transmission from the human to the mosquito
Bun» and By, and the probability that the human is infectious or recovered Ij,/Nj, and Ry, /Nj,. The total
number of mosquito bites, and the infection rates are, respectively, defined as

0v0nNyNj b(Np, Ny) b(Np, Ny) v)
b(Ny,N) = ————, by,(N,N,)) = ——, b,(Ny, N,) =
(Nh, Ny) o,N, + oL, h(Np» Ny) N, v(Np, Ny) = Nv
Bnvovon

An(t) = by (N, N, _
h(t) = bp(Np, v)ﬁthv oo N, T only

0y0}

Ay(t) = by(Np, Ny) </3vh + Bun— ) m(ﬂvhlh + BunRn),

where o, is the rate at which a mosquito would like to bite a human, and oy, is the maximum num-
ber of bites that a human can have per unit time. Then o,N, is the total number of bites that the
mosquitoes would like to achieve in unit time and o, N}, is the availability of humans. The total num-
ber of mosquito-human contacts is half the harmonic mean of o,N, and o, N}, It is assumed that
the rate of releases is a constant, denoted by b. All model state variables and parameters are summa-
rized in Tables 1 and 2, respectively; the flowchart of malaria transmission dynamics is presented in
Figure 1.
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Table 1. Description of state variables.

State variables Description

Sh Susceptible, non-immune individuals

Ep Infected, non-infectious, exposed individuals

In Infectious, potentially clinically ill, non-immunes

Rh Infectious asymptomatic non-immunes, partially protected
Sy Proportion of the susceptible mosquitoes

E, Proportion of the infected mosquitoes

Iy Proportion of infectious mosquitoes

Sq Proportion of the released sterile mosquitoes

Table 2. Descriptions of the model parameters.

Parameter Description

Ap Immigrate rate of humans. Humans x Days ™"

Y Per capita birth rate of humans. Days ™"

Uy Per capita birth rate of mosquitoes. Days ™"

oy Number of times one mosquito would bite humans per unit time. Days ™"

oh The maximum number of mosquito bites a human can have per unit time, Days ™'

Bhy Transmission probability from an infectious mosquito to a susceptible
human if contact (bite) occurs. dimensionless

Buh Transmission probability from an infectious human to a susceptible

_ mosquito if contact (bite) occurs. dimensionless

Bun Transmission probability from a recovered human to a susceptible mosquito dimensionless
if contact (bite) occurs.

&n, &y Per capita rate of progression of human/mosquitoes from the exposed state
to the infectious state. Days ™"

S Per capita disease-induced death rate for humans. Days ™'

1k, M2k Density-independent and density dependent death rate for humans,
respectively. Days~ ', Humans x Days ™"

v, Koy Density-independent and density dependent death rate for wild mosquitoes,
respectively. Days~', Mosquitoes x Days ™'

gy H2g Density-independent and density dependent death rate for sterile mosquitoes,
respectively. Days ', Mosquitoes x Days ™"

Oh Per capita rate of loss of immunity for human. Days ™"

Yh Per capita recovery rate for humans from the infectious state to the
recovered state. Days ™"

b The release rate of sterile mosquitoes. Days ™

Using ideas from [23,44,45], based on the flowchart in Figure 1, the malaria transmission model
is given by the following differential equations

ds,

G Ay + YNy + ppRy — Ap(®)Sp — fu(Np)Shs
dE},

e M ()Sp — EnEl — fu(Np)Ep,

dr

e EnEn — vnlp — fn(Np)In — Splp,

dRry,

T Yilh — puRy — fu(Np)Rp,

ds N,

d_tv = WVM—_:SgNV - )\v(t)sv _fv(Nv + Sg)sw
dE,

E = )\v(t)sv - éva _fv(Nv + Sg)Ev>
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Figure 1. Flow diagram for model (1).

dI
d_: = SVEV _fv(Nv + Sg)Iw
ds,
= = b LW+ 55, (1)

The initial conditions of system (1) satisfy
Sh(0) = Sno»  En(0) = Epo,  In(0) = Ino,  Rp(0) = Rios

)
Sy(0) = Sw,  Ev(0) = Eyp,  L,(0) = Ly, Sg(o) = SgO'

2.1. Preliminary analysis of system (1)

In this section, we first analyze the positivity and boundedness of solutions of system (1). From
system (1), directly calculating shows

dN, (t
%() = Ap + YNy — fu(Np) Ny,
dN, (1) YNy
= N, — (N, So)N,,
dt N, + 5, JrNi+Sp) (3)
ds, ()

= b Ny + 88,

From the first equation of Equation (3) and using the expressions of f; (Ny,), we have

AN (t — j1n)? —~ 2
n® _ Ayt W — pan) . <Nh _ Yn Mlh) '
dt 4100 22
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Let

_ 2
Ko = A+ (Wn — pn) ’

4i2p
we obtain

0<N,=8,+Ey+ I+ Ry <Ko.
Let Nyg = N, + S;. It follows from the second and third equation of (3) that

dN,,  aN?
— =—+b—uyN, - //ngsg - MZVNvgNV - U«ZnggSg-
&t~ Ny

From the above expression, it is easy to obtain that

dNg
dt

= ang +b— (i1 + /12Nvg)Nvg
=(b- IELINvg) + (a— ﬂZNvg)Nvg <0, VNvg > max{b/ji1,a/ 12},

where (7 = min{u1y, p1g} and iz = min{uay, g} For any fixed constant Kj such that Kj >
max{b/ i1, ¥/ [i2}, it is easy to verify that the set

Qo = (N Nin Sg) : 0 < Njy < Ko, 0 < Ny + S < K}

is a positively invariant and attracting set for the flows of system (1) in the positive quadrant.

In fact, the right-hand side of system (1) is continuous with continuous partial derivatives in 2, so
system (1) has a unique solution. It is clear that dz\g‘t(t) >0, dl\(]{t(t) >0, dsgt([) > 0, for t > 0 when the
right-hand state variable function are zero, respectively, in system (1). Thus, the human and mosquito
populations Ny, N, and S¢ are positive. From the discussion, we have the region 2 is a positively
invariant and attracting set. All solutions of system (1) in Ri eventually enter 2.

Now, we shall investigate the existence of the disease-free equilibrium and the reproduction
number of system (1). In system (1), let

Ey=0, I,=0, R,=0, E, =0, I,=0.
The disease-free equilibrium of system (1) satisfies the following equations:

Ap 4+ Sy — (win + w2rSk)Sp =0,

Sy
Sy + g

b— (Mlg + MZg(Sv + Sg))Sg =0.

Sy — (v + H2v(Sy + §g))Sy = 0, (4)

From the first equation of (4), there always exists a positive root:

_ W =) + VW — wan)? + 4uan

Sho
2uan

(5)
From the second and third equation of (4), its positive components satisfy

VSy
Sy + S

b= (K1g + t2g(Sy + Sg))Sg.

= (1v + H2v(Sy + Sg))Svs
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Let Nyg = Sy + Sg. We have

yyb

Sy =N, + Ny, So=——"—"—"7—.
YySy vg(,ulv H2v) vg Yy g Ji1g + 112 Neg

Adding the above two equations, we have

Y b

N,o = Nyo( + Ny) + —mMM8M.
Yy vg vg U1y T U2y Nvg J1g + 112 Nvg

Define

P(Nvg) L= MZV,U«ZgNgg - (MZg(wv — U1y) — szmg)Nfg
— (Yv — 1) igNyg + Yvb = 0. (6)

It follows from Equation (6)
P/(Nvg) = 3M2vﬂ2gN3g - Z(MZg(I/fv — K1) — MZvﬂlg)Nvg — (P — Mlv)ﬂlg,

that if Nvg > 0 is a critical point of P(N,) with P’ (Nvg) = 0, then

2
Nvg <\/(/)L2g(wv - K1) — /fLZvlleg) + 3/¢L2vl¢02g(wv - Mlv),ulg

I

+ MZg(WV — K1) — MZVM1g>'

Note that
ZP(Nvg) = ZP(Nvg) - P/(Nvg)Nv = _MIVMZgNSg = (Y — Mlv)ﬂlngg + 2¢yb.

Hence, if we define the release threshold of sterile mosquitoes as

1 _ -
bg := E(MZV:U«ZgNgg + (Yy — m1v) 1g) Nyg,
v

then P(Nvg) <0 if and only if b < by, and thus, it follows fronl P(0) =y¢,b >0 and
limy-—, 00 P(Nyg) = 00 that there exists a unique positive solution, Njfg = Ny, of (6) if and only if
b = by. In this case, Equation (4) has a unique positive solution, denoted by (Sho> S, Sg), where
Sho = Sho, and S,, Sg given by

] + 12NNy < b
5, = Wt NN Sg=— . (7)
Yy g + 12gNvg

If b < by, Equation (6) have two positive solutions, denoted by Ni"vg and N;‘Vg with Ni‘vg < Nvg <
N3,,- In this case, the two positive solutions of Equation (4) are, respectively, denoted as (Spo, Sy;» S7g)»
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and (Sko, S5, Sjg), given by

g _ (t1y + m2vN lvg)vag s _ (1v + pay 2vg)N2
vl — <

Vv e vy ’
(8)
Sp=——w <Spy=
Hig + MZgszg Mg + MZgvag
Obviously, if b > by, then (Spo, 0, Sg) is a unique solution of Equation (4), where
2
/M1, Tt 4buog
oY £ 7 9)

2M2g

From the above discussion, we summarize the existence results for the disease-free equilibrium of
system (1).

Theorem 2.1: If b > by, system (1) has no wild mosquito populations Ey(Spo,0,0,0,0,0,0, Sg),
1ivith Sho,Sg g_iven in_(S), 9), tesp_ectively. If b= by, system (1) has a unique disease-free equilibria
E(Spo,0,0,0,8,,0,0,S,), with S,, Sy given in (7). If b < by, system (1) have two disease-free equilib-
ria E{ (Syo,0,0,0,8%,,0,0, S} ) and E3 (S, 0, 0 0,S},,0,0,8% ) with Sh0>sv1:5 , 8555 S5 5 are given in
(5), (8), respectively.

Remark 2.1: By applying similar analysis as in [23], it is easy to show that the boundary equilibrium
Eo(Sno,0,0,0,0,0,0, Sg) is always locally asymptotically stable. In this case, since there is no wild
mosquitoes at this boundary equilibrium, it is unrealistic in practice. If b < by, then there exist two
equilibria E} (Sk0,0,0,0, S, 0,0, ST ) and E} (Sp0,0,0,0,S,,0,0,S; ) where Ej is stable and E} is a
saddle-node point. As the release rate b increases, the two equ111br1a are getting closer. They colhde
at b = bp, and become a unique saddle-node point.

Remark 2.2: We established a release threshold by of sterile mosquitoes in system (1). It is important
to determine a threshold release value in eliminating malaria transmission. These obtained results
are similar to those in recent papers [23,31,49], whereas the release number of sterile mosquitoes
exceeds the threshold value, the boundary equilibrium is asymptotically stable, which means all wild
mosquitoes go extinct eventually. On the other hand, if the release rate is less than the threshold, the
model has two disease-free equilibria, one of which is always a saddle point, and the other is locally
asymptotically stable.

2.2. The reproduction number

Now, we derive the basic reproduction number of system (1), The basic reproduction number is
calculated by using the next generation matrix method as described by Van den Driessche and Wat-
mough [50]. We denote F as the matrix of the rates of secondary infections, and V as the matrix of
the rate of disease progression. Thus, we have

T (Bl + RS,
Gva+ N vhih vhIp
0
F = Bryovon

oyN, + oy Ny, Y
0

0
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and

§vEy + (L1y + 2v(Ny + Sg))Ey
—&Ey + (1y + p2v(Ny + Sg))Iv
V= EnEn + (1n + u2nNp)Ep
—&nEn + yulyp + (1n + ponNp)Ip + Sply
—¥ulh + onRn + (11 + 12nNp) Ry

According to Theorem 2.1, in system (1), we evaluate the derivatives of F and V at the infection-free
equilibrium E7 (S, 0,0,0, S}, 0,0, S’l‘g) due to the other equilibria may be saddle-point, which they
are not suitable.

Let ki =& + p1y + p2v(Syy + STp)s ko = pay + pav(Syy + S7p)s k3 =& + ian + i2nShos
ks = yn + 1n + w2nSho + 8n, ks = pn + 41n + H2nSho- We have

0 0 0 lgvho'havstl thahavstl
OhSho + 0vSy;  OnSho + 0,8},
0 0 0 0 0
F= 0 ﬂhvahavsho* 0 0 0
onSho + Uvsvl
0 0 0 0 0
0 0 0 0 0
and
ki 0 0 0 0
& k 0 0 0
v=] 0 0 k 0 o0
0 0 —& ki 0
0 0 0 —y ks
By direct calculation, we have
! 0 0 0
£
v
— 0 0 0
kiky ko )
v1l= 0 0 — 0 0
e
h
0 0 —_ — 0
ksky ky
0 visn  vn 1
ksksks  ksks ks
Thus, the next generation matrix is
K=Fv!
0 0 Enonoy (ks B + YiPun) St
kskyks(0,Spo + Uvstl)
0 0 0
= BivEvonovSho BnonovSho 0
k1ka(0nSho + Uvstl) k2 (onSpo + Uvstl)
0 0 0
0 0 0
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ooy (ks Bun + yhﬂvh)s‘tl ﬁvhahavstl
kks(0nSho + Uvsjl) ks(04Sho + Uvstl)
0 0
0 0
0 0
0 0

By calculating the eigenvalues of the next generation matrix K, we obtain the threshold

R — BrvEvoyonSho BunénovonSvo BunEnynovonSty (10)
0= .
kiky (Uvstl + 4hSho) k3k4(0v8t1 + 0hSho) ksksks (Uvstl + 0hSho)
Let
& 0vS5,01Sho 1
Apy = * PN * * x B - * PN
&+ (1 + V«Zv(svl + Slg) (Uv(svl + Ghslg))svl Uiy + MZV(S” + S]g)
&n 5 1 &n
By = “ Buh - +
&n + tan + H2nSho Yh+ man + m2nSho + 01 En + pan + 2nSho
Vh Uhshogvsjl 1

Yo+ in + 1onSho + Sn  (03SE + 0hSho)Sho P + Hin + H21Sho

Notice &,/(&y + i1y + n2v(S}; + S7,) is the probability that a mosquito will survive the exposed state
to become infectious; 1/(p1y + 20 (Sh; + S*fg)) is the average duration of the infectious lifetime of
the mosquito, (6,S}01Sh0)/(0vS}; + onSho)Sh; is the number of bites per mosquito per unit time;
&n/(En + win + 1anSho) is the probability that a human will survive the exposed state to become
infectious; 1/(yn + t1n + H2rnSho + 81) is the average duration of the infectious lifetime of a human.
OhSho0vSh1 /(0vSh, + 01Sho)Sho is the number of bites per human per unit time; and 1/(o5 + 1, +
H21Sho) is the average duration of the recovered period of a human.

We define R% as the spectral radius of the next generation matrix, i.e. R% = ApyByp. T\’,(z) is the
basic reproduction number of system (1). It can express as the mean number of secondary infections
in both mosquito and human individuals produced by one infective individual (either mosquito or
human) during their infectious period, assuming that previously all other humans and mosquitoes
were susceptible [44,51,52]. Thus, we can establish the following result.

Theorem 2.2: The disease-free equilibrium Ej (Spo,0,0,0, S7;,0,0, S7,) of system (1) is locally asymp-
totically stable when R} < 1, and unstable when R} > 1.

3. Optimal control of malaria model

In the malaria regions, many at-risk populations live in extremely destitute, remote areas. Poor, rural
families are the least likely to have access to the preventative fundamental measures of malaria con-
trol. The economic burden of the disease is vast. It is estimated that malaria costs African countries
more than $12 billion every year in direct losses [2]. In addition, SIT relies on the sterilization by
irradiation of large numbers of male mosquitoes. This has unavoidable costs in terms of the fitness
of the irradiated mosquitoes. The financial requirements of constructing and operating the radiation
facility are high. So, limited resources and cost for malaria control must be considered. In this section,
we used optimal control theory for system (1) to include two control variables. Let u; () denote the
insecticide-treated bed net coverage, and u,(t) the release rate of sterile mosquitoes. These control
variables are proportions, varying between zero and one.
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In this formulation of the model, A;,(¢) is replaced by (1 — u; (t))A1,(?), and b is replaced by bu, (¢).
When u; (t) = 0, there is no reduction in the transmission rates resulting from bednet efforts, while
u1(t) = 1 represents perfect protection from bednet use. Although several species of mosquito blood
feed primarily at night, 100% bednet coverage will not eliminate malaria transmissions. Similarly,
when u,(¢) = 0, no releasing of sterile mosquitoes, and when u,(¢) = 1, the releasing of sterile
mosquitoes occurs at the maximum possible rate. In real life, since the bednets may not be 100% effec-
tive, there is some effort required to maintain or replace bednets over time. The releasing of sterile
mosquitoes is also similar.

The reformulated model with two controls is given by the following the differential equations:

dsy,

G - Ap 4+ YNy + ppRy — (1 — ur () Ap (H)Sh — fu(NR)Shs

dE
= = = OMOS, — EEn — fu(Nw) By,

dr,

Pl EnEp — vnlp — fn(Np) Iy — Sulp,
dR
d_th = YnIn — puRn — fn(Nn)Rps

(11)

ds Y, N2

d—t” = m — (1 = ur())Ay(DSy — fr(Ny + S)Sy

dE,

dt = (1 - ul(t)))\v(t)sv - éva _fv(Nv + Sg)va

dI

d_: = éva _fv(Nv + Sg)IV)

ds,

E = buZ(t) _]Sg(Nv + Sg)sg-

The initial conditions of system (11) are
Sn(0) = Spo,  En(0) = Epo,  I1n(0) = Ing,  Rp(0) = Rpo, (12)

Sy(0) = Sw, Ev(0) = Eyp,  L,(0) = Ly, Sg(o) = Sg()'

As previously mentioned, implementing control measures incurs a cost. Our goal in applying opti-
mal control theory to the malaria model was to determine a control strategy (using the combination
of releasing sterile mosquitoes and the bed net coverage) that minimizes the number of human infec-
tions and the cost of the program. Mathematically, the goal was to determine an optimal control pair
(u5 (1), u3 (1)) that minimizes the objective functional:

T 1
J(uy,up) = f wiIn(t) + E(qu%(t) + wiu3 (1) dt, (13)
0

where the interval [0, T] represents the time interval over which the control program is conducted,
and the w;(i = 1,2, 3) are weights representing the relative costs of I and the control measures. The
term wy u% + ws u% in the objective functional J incorporated the nonlinear costs of the controls.
This state system with Lebesque measurable coefficients has a unique non-negative bounded solu-
tion on the finite time interval [0, T] [53]. Note for this system, the control set and the objective
functional have the appropriate compactness and convexity assumptions to guarantee the existence
of an optimal control pair and the corresponding states [54,55]. Having the existence of an optimal
control, we can now apply Pontryagin’s Maximum Principle [55,56], we reformulate the problem of
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finding time-dependent control variables ] (t), and 1} (¢) that minimize J into the equivalent problem
of minimizing the Hamiltonian

1
H=wly + E(qu% + w3u3)

Brvovoy

+ A\ Ap+ YNy 4+ onRy — (1 — ug (t)) ———1,
l(h YNy + pnRp — ( ul())N+ N

— (U1n + ,uthh)Sh>
Bmovon
oyNy, + opNy,
+ A3(EnEn — yulp — (uin + panNp)I — Sply)

+ Aa(Yulp — onRp — (1n + manNR)Ry)

+ A2 ((1 —u1(t)) LSy — &REp — (Uin + Mthh)Eh>

N,
A —A-uy(t) ———— I Ry)S

+ S(wVNV—l-Sg 1 —wu () N+ hN (BonIn + BunRi)Sy

— (v + pav(Ny + Sg))8v>

+ %6 ((1 - “1(1‘))ﬁ(,3vh1h + BunRi)Sy — &.Ey — (1y + poy (N, + Sg))Ev>

+ A7(5vEy — (av + pnav(Ny + Sg))Iv)

+ Ag(b - up(t) — (//ng + I»LZg(Nv + Sg))sg) (14)
Noticing the integrand of the objective functional ], and A; (i =1,...,8) are the solution vector
to the adjoint system of equations di;/dt = —dH/dt with the transversality condition A;(T) = 0,
i=1,...,8. By direct computation, we obtain the adjoint equations

(1 — u)) Buonoyl,(on(Ep + I + Ry) + Uva)>
(onNp + Uva)z

(1 — u1) Bpyonovly(op(Ep + I + Rp) + UVNV)>

A =M <—1/fh + pip + pon(Sp + Np) +

(onNp, + oyN,)?

(1 — u)o20ySy(Bunln + BonRn)
(opNp + UVNV)Z

(1- ul)ﬁhvaﬁoﬂvsh>

+ A2 (MzhEh -

+ Aspopdy + AgpopRy + (A — As) , (15)

My =1 | =¥ + monSh —
2 1( Yn + anSh (OnNy & ouNy)?

(1- ul)ﬂhva;%avlvsh tE
(onNp + oyN,)? '

+ A2 (Mlh + won(Ep + Np) +
(1 — u)o?0ySy(Bunln + BunRn)
(onNp + UVNV)Z

(1- ul)ﬂhvoﬁavlvsh (1- “l)ﬂhvaﬁovlvsh
W= [ =Wn + tanSh — + A Ej, +
3= ( U St e G N 2\ H2h e G Ny + 0N,

+ As(uandy — &p) + AaptopRy + (A — As) , (16)

+ A3(yn + 8p + pan + ponp + Np)) + Aa(onRy — i)
1 — uyp)o,onS,

(6,Ni, + oyN,)? (Bvhon(En + Ry + Sp) — Eth'th + BuovNy) — wi, (17)
vINy

+ (A5 — Ag)
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(1 — u1) Buyo o1, Sh (1 — u1) Buyo o1, Sh
)~§1=)»1<—1//h—ph+uzh5h— Th Y2 ) o | sanEn + i s

(onNp + GVNV)Z (onNp + GVNV)Z

+ Aspondy + Aa(i1n + p2n(Ry + Np) + op)
(1 — u1)onoyS,
(onNp + GVNV)Z
(1 — u1) Buyono 21, Su
(UhNh + O'VNv)z

+ (A5 — A¢) (Bonon(En + In + S) — Bunonln + PunovNy), (18)

A5 = (A2 — A1)

YNy (Ny +280)

A Ny, + Sy +Sg) —
+ 5<M1v+/’b2v( v+ 5+ g) (Nv+Sg)2

(1 = u)onoy(Bonln + BunRe)
(onNp + o—1/1\]1/)2

(ov(Ey + 1) + UhNh)>

(1 — u1)0noy(Bynlp + BunRp)
A E, — E I N,
+ A¢ (MZV v (n Ny + oy N,)2 (ov(Ey + 1) + opNp)
+ Aypanly + )L8M2gsg> (19)
)»/ — (}\’2 _ )\’1) (1 - ul)ﬂhvahavzlvsh + )\.5 (//Lz S _ I11/1/1\]1/(1\]1/ + ZSg)
° (0nN), + 0 N,)? T Ny Sp)?

(1= 41)0307Sy(Bunln + BvnRn)
(onNp + oyN,)?

1 — up)o,02S I —|—~ R
e <M1V+MV(EV+NV+sg>+sV+( 163628, (Bynlh + Bo h))

(onNp, + oyN,)?

+ A7 (ualy — &) + ASHJZgSga (20)

(1 — u1) BpyonoySp
(onNp + UVNV)Z

YoNy(Ny +280) (1 = u1)00y Sy (Bl + BunRp)
(Ny + Sg)2 (onNy + oyN,)?

(1 — u1)0Ro 28, (Bunly + thRm)

)L/7 =1 —X2) (opNp + o0y (Ey + Sy))

+ )\5 (/’LZ‘VSV -

)

A E
e (sz v (onNp + UVNV)Z

+ A7 (pay + pav(@y + Ny + Sg)) + )LSMZgSg’ (21)

YN,
Aé =25 ((Z\Tl—g)z + u2vSy | + AspavEy + Azponly, + )VS(IIng + MZg(Nv + ng))- (22)
v 4

The transversality conditions are
r(T)=0, i=1,...,8. (23)

Taking the partial derivative of the Hamiltonian with respect to the control variable u;, we have

oH LS In + BuR
O st Gt — ) BivonovlySu s — 26) on0v(Bunln + B Rp)
Juq onNy + oyN, opNy + oyN,
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Solving g—ﬁ = 0, we have

1,S In + BuR
up=— (A = 22) PivonovlySn ¥ (s — AG)O'hO'v(/gvh n + BvnRn) "
oyNy, + oyN, oyNy, + oyN,

Taking the partial derivative of the Hamiltonian with respect to the control variable u;,, we have

H
— = upw3 + bAg.
8”2

. oH __
Solving 7.7 = 0, we have
bxg
Up = ——.
w3
Taking into the account of the upper and lower bounds of the controls, we obtain the characterization
of the optimal controls

LS I, + BuR
wt = min [ max (0, (s = 21) BrwonovhSn O — AS)Ghav(ﬂvh h+ BvnRn) Jws |\ My
opNy, + oyN, oypNy, + oyN,

3= min (max (0.5 ) )
uy; = min | max ( 0,——— |, M, ),
w3
(24)

where M;,i = 1,2 are the upper bounds for u;(t),i = 1, 2, respectively. So we derived the following
theorem:

Theorem 3.1: Given optimal controls u1 (t), u(t) and the corresponding state solutions Sp(t), Ej,(t), I,
(1), Ru(8), Sy(1), Ey (1), I(t), Sg(t) in the system (11), there exist adjoint variables A;(t),i = 1,. .., 8, sat-
isfying (15)-(22) with the transversality conditions A;(T) = 0, i = 1,. .., 8. Furthermore, the optimal
controls uy (t), ux(t) are given in (24).

The state system (11) and the adjoint Equations (15)-(22), together with the characterization of
the optimal control (24) and the boundary conditions, are called the optimality system. We note the
strict concavity of the objective functional J, as well as the Lipschitz continuity of the right-hand side
of the state equations and the adjoint equations in the state and adjoint variables, yields the uniqueness
of solutions of the optimality system for small-time [55].

4. Numerical simulations

In this section, we present the numerical results for various cases.

4.1. Optimal control strategies

We use Forward-Backward Sweep Method [55] to solve the optimal control problem. We solve the
state system (11) forward in time with the initial conditions (12), the adjoint Equations (15)-(22)
backward in time with the transversality conditions (23), then update the optimal control using the
characterization (24) until the convergence criterion is met.

Parameters are taken from [23,45] with A = 0.033, ¥, = 0.00011, ¢, = 0.13, 0y, = 19, 0, =
0.5, By = 0.022, By = 0.48, B,y = 0.048, &, = 0.10, &, = 0.091, y, = 0.0035, §;, = 0.00009, p), =
0.00055, 1 = 0.000016, pz; = 0.0000003, f1y = 0.033, 4y = 0.00002, b = 100, 14 = 0.012,
M2g = 0.00002. The initial populations are [Sp, Ex, In, Ry, Sy, Ev, I, S¢] (0) = [500, 10, 30, 0, 4000, 100,
50,0]. We take the weights in the objective functional to be w; = w, = w3 = 1, other choices of
wi, i = 1,2,3 have been explored, they illustrate similar patterns.
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Figure 2. Human, Sy (t), Ep(t),I5(t), Rp(t) and wild mosquitoes, Sy (1), Ey (1), Iy (t), S4(t), without control. N, = 500, N, = 4000. (a)
Human Population w/o Control. (b) Wild Mosquitoes Population w/o Control.
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Figure 3. Human: Sy (t), Ep(),In (1), Ra(t), wild mosquitoes: Sy (t), Ey(t), Iy (t), and sterile mosquitoes S4(t) with 2 controls. Ny =
500, Ny = 4000. (a) Human Population with 2 controls. (b) Mosquito Population with 2 controls.

4.1.1. Two optimal controls

Figure 2 shows the susceptible, exposed, infected and recovered human population, with the sus-
ceptible, exposed and infected mosquitoes population, respectively, without any control strategies.
Figure 3 illustrates the combination of usage of ITN and the releasing of sterile mosquitoes can dra-
matically reduce the amount of exposed and infected human population, susceptible, exposed, and
infected mosquitoes populations, respectively, while maintaining a high level of susceptible humans.
The corresponding two optimal controls are shown in Figure 4. Both control strategies show similar
pattern: we apply the controls in a high level, gradually reducing the effort, and finally apply it at a
low level.

4.1.2. One optimal control
The optimal control problem can be reformulated to find the optimal strategy of each control method
when used alone.

We can turn off one of the two controls in Section 4.1.1 and see how it affects our system. Figure 5
gives the dynamics of susceptible, exposed, infected and recovered human population, suscepti-
ble, exposed, infected and sterile mosquitoes with only one control - SIT. Only releasing sterile
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Figure 4. Humans: Sy (1), En (1), In(t), Ry (t) and Mosquitoes: Sy (t), Ey (1), Iy (t), S¢(t) with two controls. (a) Optimal bed net usage.
(b) Optimal release rate of sterile mosquitoes.
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Figure 5. Human: Sy (t), Ep (1), (1), Ry (t), wild mosquitoes: Sy (1), E, (1), I,(t), and sterile mosquitoes s4(t) with 1 control (SIT).
Np = 500, N, = 4000. (a) Human populations with 1 control (SIT). (b) Mosquitoes Populations with 1 control (SIT).
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Figure 6. Human: Sy (t), Ex(t),/p(t), Ry (t), wild mosquitoes: S, (t), E, (1), Iy (t), and sterile mosquitoes s4(t) with 1 control (ITN).
Np = 500, N, = 4000. (a) Human populations with 1 control (ITN). (b) Mosquitoes Populations with 1 control (ITN).
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Figure 7. Optimal 1 control strategy: (a) ITN only; (b) SIT only.

mosquitoes can effectively reduce wild mosquitoes, but it cannot increase susceptible human pop-
ulation and decrease infected human population as efficiently as in Figure 3. Figure 6 illustrates the
dynamical system with solely the other control — ITN. Only using bednet can significantly reduce
infected human population while increasing susceptible human, but there will be much more sus-
ceptible wild mosquitoes as compared with Figure 3. We also observe more exposed and infected
human, exposed and infected mosquitoes populations reduction using the ITN control when com-
paring Figures 5 and 6. Figure 7 gives each of the optimal control strategy without using the other
control strategy. As we can see that only using ITN, it needs a constant high coverage for the bed net,
while only using ITN, it needs to apply it for a short period of time of high level, then reducing to a
low level.

5. Concluding remarks

In this paper, we have investigated a malaria transmission model with the release of sterile mosquitoes.
Based on the next-generation matrix method [50], the basic reproduction number Ry of the disease
transmission is derived. To eradicate or suppress the wild mosquitoes, the releasing threshold by of
sterile mosquitoes is given in our Theorem 2.1.

Analysis of the basic reproduction number revealed that certain environments and control policies
may, in fact, render the releasing of the sterile mosquitoes benefit to the goal of reducing the over-
all disease burden. In paper [44,45], the backward bifurcation phenomena are observed for malaria
transmission without the releasing of the sterile mosquitoes. However, in system (1), from the expres-
sion of the basic reproduction number Ry, the releasing of the sterile mosquitoes is making a backward
bifurcation less likely even if Ry < 1. The suitable release of the sterile mosquitoes may help to avoid
the potentially dangerous scenario of backward bifurcation. So we can guarantee that the disease-free
equilibrium of system (1) is the only equilibrium, when control programs with sterile mosquitoes
must strive to push Ry less than one.

By choosing the parameters in paper [23,45], we investigate the optimal releasing of the sterile
mosquitoes and the usage of ITN strategies and gain a qualitative understanding of how these two
controls should be applied in dealing with malaria transmission, and how they should be used in
different malaria-endemic settings. We quantify the effectiveness of the two interventions aimed at
limiting the spread of malaria. We found the optimal control strategies and discovered the combi-
nation of both strategies leads to more rapid elimination of the wild mosquito population that can
suppress malaria transmission.
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Our analysis shows that SIT is an important method to control and eliminate the wild mosquito
population. From the biological point of view, the wild mosquitoes will be eliminated if the release rate
of sterile mosquitoes is large, which is unrealistic sometimes due to the cost. When the release rate of
sterile mosquitoes lies in an intermediate level, whether the wild mosquito population is eliminated
or not depends on the initial wild mosquitoes and sterile mosquitoes densities. In order to achieve the
beneficial effect, the design of sterile-male release programs must account for the ecology, behavior
and life history of mosquitoes [30]. Furthermore, maximizing the public health benefits of SIT-like
system called RIDL (Release of Insects carrying a Dominant Lethal) technology involves optimizing
all stages of the control program. The release strategy can profoundly affect the outcome of a control
effort. For example, the strategies of releasing adult mosquitoes only, pupae only, or a combination of
the two each have relative advantages in certain situations. Recommendations are also provided on
effective approaches to achieve long-term suppression of a wild mosquitoes population using com-
bined releases of adults and pupae. These items are not included in our present model. They will be
scheduled to complete in the future.
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