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Abstract: We construct a West Nile virus epidemic model that includes the interaction between the
bird hosts and mosquito vectors, mosquito life stages (eggs, larvae, adults), and the dynamics of both
larvicide and adulticide. We derive the basic reproduction number for the epidemic as the spectral
radius of the next generation matrix. We formulate two impulsive optimal control problems which
seek to balance the cost of insecticide applications (both the timing and application level) with the
benefit of (1) vector control: reducing the number of mosquitoes or (2) disease control: reducing the
disease burden. We reformulate these impulsive optimal control problems as nonlinear optimization
problems and derive associated necessary conditions for the optimal controls. Numerical simulations
are used to address three questions: How does the control and its impact on the system vary with the
objective type? Is it beneficial to optimize the treatment timing? How does the control and its impact
on the population vary with the type of pesticide used?
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1. Introduction

West Nile virus (WNV) is maintained in a cycle between mosquitoes and hosts. Culex mosquitoes
species are the predominant vector of WNV in North America [38,41], and birds are the most important
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host species for WNV amplification. Although many mammals, including humans, develop WNV
disease, they do not typically develop sufficient viremia to transmit the infection [43].

West Nile virus was discovered in Uganda in 1937, but not first detected in North America until
1999, when an outbreak in New York City caused 62 human cases of WNV disease, 7 human deaths,
and dramatic mortality in American crows [37]. The virus quickly spread throughout North America,
and has since been reported in every contiguous state in the U.S. [37] and all but two Canadian
provinces [23]. WNV is the leading cause of mosquito-borne disease in humans in the continental
United States [10, 13, 14]. Since its introduction to the U.S., WNV is estimated to have caused 51,000
clinical human cases of WNV disease, 2,300 human deaths, and 7 million human infections [37].
In addition, the virus has been detected in over 300 species of birds and has caused substantial bird
mortality [12]. Although many bird species have rebounded since the initial introduction of WNV to
North America, a few species, including the American Crow, have suffered persistent reduced survival
[20, 37]. Species with limited range or that are otherwise endangered are especially vulnerable to the
negative impacts of WNV [37]. An avian vaccine is available and was administered to wild populations
of endangered California condors and rare island scrub jays [26]. However, since vaccination of wild
populations is challenging and expensive, and since there are no vaccines or preventative medications
available for WNV disease in humans [10, 37], mosquito management remains an important tool for
WNV control and prevention.

Local governments use mosquito management and integrated vector management plans to control
mosquitoes and limit the spread of disease [4, 22, 36]. These mosquito control strategies combine
cost benefit analysis and risk assessments in order to implement timely, effective, and environmentally
responsible mosquito control [4, 22, 36]. Control measures considered in this paper include larvicide,
which is applied to stagnant water to kill immature mosquitoes, and ultra-low-volume adulticide
sprays, which target adult mosquitoes as they fly. Although research supports the benefit of managing
mosquitoes to prevent disease, and previous work has provided many insights into principles of
effective mosquito management, many questions remain open [4]. For example, the magnitude and
duration of mosquito suppression required to prevent an epidemic and general principles for guiding
effective and efficient treatment schedules are current topics of interest in mosquito management [4].

Mathematical and statistical modeling helps to elucidate mechanisms that drive WNV epidemics
[1, 25, 32, 42, 46]. Several works investigate the impact of species diversity on the risk of an
outbreak [1, 25, 32, 42]. Variable host competence, including the potential dilution effect of dead-
end hosts [1, 25, 32, 42, 44], competition between bird hosts for resources [32], and biting preferences
of mosquitoes [32, 42, 44], are a few of the ecological factors that can impact the risk and dynamics
of a WNV epidemic. In relation to variable host competence, [25] presents a tool for estimating the
basic reproduction number of WNV in any bird community using phylogenetic mixed effect models
and eBird citizen science data. A statistical data analysis, which includes many of the above ecological
mechanisms, supports heterogeneous host competence as a significant factor impacting the circulation
of WNV within the bird community [42]. Interestingly, this study does not support the presence of
a dilution effect. Environmental factors, such as land use, temperature-dependent parameters, and
seasonal effects, can also impact the risk of a WNV epidemic [32, 42, 44, 46]. A comparative study
suggests the potential impact of temperature-dependence on the risk of a WNV epidemic outweighs
that of ecological variability [44].

Additional mathematical analyses consider the control of WNV and mosquitoes. For example,

AIMS Mathematics Volume 7, Issue 10, 19597–19628.



19599

much work supports the idea that a WNV epidemic may exhibit backward bifurcation [1, 2, 6, 15, 50],
which implies the robust management techniques are required to reduce the reproduction number of the
disease below one. Several papers investigate the impact of mosquito control on the risk of infection
by evaluating how control measures will likely impact the value of the reproduction number [7, 15,
47]. The previous works do not provide a dynamic model of the control action. Instead, results
are obtained by relating control efforts to model parameters. These works support the idea that it is
possible to terminate a WNV epidemic by reducing the size of the mosquito population. However,
results also suggest that larvicide alone may not be sufficient for this purpose [15]. While analysis
based on the model basic reproduction number widely supports the idea that the mosquito-to-bird ratio
is an important determinant of the risk of a WNV epdidemic [44,47], uncertainty and variability in the
model parameters make it difficult to determine a threshold value of concern. In [44] a mosquito-to-
bird ratio greater than 100 indicates a high risk of WNV outbreak across a wide range of ecologically
and environmentally feasible parameter values.

Finally, several works evaluate the impact of mosquito and disease control strategies [2,6,21,31,50].
In [21,50], a control acts to impulsively reduce the size of the mosquito population at periodic or state-
dependent application times. Although it is possible to compute thresholds for the persistence of the
disease in these models, due to their complexity, numerical simulations are needed to visualize the
relationship between the control schedule and disease persistence. Alternately, some researchers have
used optimal control frameworks to characterize effective and efficient control strategies [2,6,31]. In [2,
6], continuous optimal control problems, where the effect of pesticide and personal protection can be
continuously adjusted, are posed. Results suggest that larvicide may be more effective than adulticide
when used in isolation [2], and that personal protection is less effective than mosquito control [6].
The former result seems to be in disagreement with [15], where it was suggested that adulticide is
essential for disease control, however, this difference is likely due to the objective functional used in [2],
which attempts to minimize, among other things, the size of the mosquito population. A discrete-time
optimal control problem for a WNV epidemic is formulated in [31]. This problem is unique in that it
considers, along with adulticide and pesticide, bird protection (e.g. vaccination), as a potential control
action. Here the objective functional is designed to minimize mosquito larvae, infected birds, infected
mosquitoes, and a quadratic control cost. The optimal control strategy is determined for a variety of
parameterizations. In this study, optimal controls include high levels of bird protection, and larvicide is
more heavily applied than adulticide. However, as in [2], the emphasis on larvicide is likely influenced
by the fact that minimization of the larva population is an explicit goal of the objective functional.

In the current work, we use an impulsive differential equation model to study optimal treatment
schedules for the purpose of mosquito control and WNV management. Our model is similar to that
presented in [21, 50], in that pesticide controls act to instantaneously alter the value of state variables.
However, we allow adulticide and larvicide levels to decay continuously through time post application,
so that pesticide decay rates can inform the optimal treatment timing. Indeed, in contrast to previous
work [2, 6, 31], we optimize both treatment timing and application levels. In addition, we consider the
problems of controlling the mosquito population and controlling the WNV disease burden separately,
so we can better understand how different control schedules promote distinct objectives. In section
2 we formulate a WNV transmission model that describes the interaction between bird and mosquito
populations (eggs, larvae, adults) and the dynamics for larvicide and adulticide. We derive the basic
reproduction number of the infection using the next generation matrix method [45]. In section 3, we
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formulate two optimal control problems which seek to balance the cost of insecticide applications
(both the timing and the application level) with (1) vector control: the benefit of reducing the number
of mosquitoes, and (2) disease control: the benefit of reducing the disease burden. We reformulate the
optimal control problems as nonlinear optimization problems, derive adjoint equations and establish
optimality conditions. In section 4, numerical methods are discussed. In sections 5, results of
simulations are presented. In section 6, discussions and conclusions are provided. Supplementary
section 7 provides detailed descriptions of the model parameters.

2. Model formulation & stability analysis

2.1. Model formulation

The model describes the dynamics of WNV in the bird host population and female mosquito
population. The bird population is divided into three classes according to their disease status. These
classes are susceptible birds, HS (t), birds that are infectious with WNV, HI(t), and birds that have
recovered and are no longer susceptible or infectious, HR(t). Hence, the total bird population is given
as

NH(t) = HS (t) + HI(t) + HR(t)

The mosquito population is divided into three groups: eggs, aquatic larvae and pupae, and adults.
These groups are further divided according to infection status. Since WNV can be transmitted
vertically in the mosquito population, we have separate compartments for eggs laid by susceptible
mosquitoes, ES (t), and eggs laid by infectious mosquitoes, EI(t). The aquatic population is further
divided into susceptible larvae and pupae LS (t), and infected larvae and pupae LI(t). The adult
stage group is divided into susceptible mosquitoes VS (t), exposed mosquitoes VE(t), and infectious
mosquitoes VI(t). Hence, the total mosquito population is given as

NV(t) = NL(t) + NA(t),

where
NL(t) = ES (t) + EI(t) + LS (t) + LI(t),

and
NA(t) = VS (t) + VE(t) + VI(t).

Finally, the larvicide and adulticide levels are given as UL(t) and UA(t), respectively. Note that these
levels do not match the absolute levels of pesticides in the environment or the biological impact of the
pesticides as measured by percent inhibition of adult emergence or percent mortality in adults. Instead,
they reflect the constant by which the maximal pesticide-induced larva and mosquito death rates should
be scaled to match data on percent inhibition of adult emergence and percent mortality in adults, as
described in supplementary section 7.

The model dynamics are described by the following system of differential equations.

dHS

dt
= −pMHbVI

HS

NH
(2.1)
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dHI

dt
= pMHbVI

HS

NH
− dHHI − gIHI

dHR

dt
= gIHI

dES

dt
= rS (VS + VE) − mEES

dEI

dt
= rIVI − mEEI

dLS

dt
= mEqS ES + mEqI(1 − φ)EI − µLLS − mLLs −

d(LS + LI)
C

LS − km1LS UL

dLI

dt
= mEqIφEI − µLLI − mLLI −

d(LS + LI)
C

LI − km1LIUL

dVS

dt
= mLLS −

bpHMVS HI

NH
− µVVS − km2VS UA

dVE

dt
=

bpHMVS HI

NH
− kLVE − µVVE − km2VEUA

dVI

dt
= mLLI + kLVE − µVVI − km2VIUA

dUL

dt
= −gLUL

dUA

dt
= −gAUA

where d =
mLrsqS
µV
− µL − mL, so that C is the steady-state density of larvae.

The above system of equations reflects the following dynamic processes: Healthy susceptible birds
acquire infection following contact with infected mosquitoes at a per capita rate pMHbVI

HS
NH

, where b is
the per capita biting rate of mosquitoes on birds, and pMH is the transmission probability of West Nile
virus per mosquito bite. Infectious birds die due to WNV disease at the per capita rate dH or recovered
at the per capita rate gI . We neglect host birth and death in this simple model. Hence this model is best
suited to study a WNV epidemic occurring mid to late summer when most birds have finished laying
eggs for the season.

Susceptible and exposed mosquitoes lay eggs at the per capita rate rS and infected mosquitoes lay
eggs at the per capita rate rI . Mosquito eggs mature at a per capita rate mE. A proportion qS of the
susceptible-laid eggs hatch into live larvae and a proportion qI of infectious-laid eggs hatch into live
larvae. A fraction φ of larvae descending from infectious mothers are infected.

Larvae mature into adult mosquitoes at the per capita rate mL. Larvae are subject to density-
independent natural mortality at per capita rate µL and density-dependent mortality, with carrying
capacity C. Larvae are subject to larvicide-induced mortality with a maximal per capita rate of km1.

Susceptible mosquitoes acquire the infection following contact with the infected birds at the per
capita rate bpHMVS HI

NH
. Adult mosquitoes have a natural per capita mortality rate µV regardless of their

infection status. Exposed mosquitoes progress to the infectious class at the per capita rate kL. Adult
mosquitoes are subject to adulticide-induced mortality with a maximal per capita rate of km2. Adulticide
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and lavicide levels decay exponentially with rates gL and gA, respectively.
The model variables and parameters are summarized in Table 1. In the supplementary section 7,

we describe the model parameterization. Parameter values and ranges are summarized in Table 3. A
model diagram is given in Figure 1.

Figure 1. Model diagram.

2.2. Stability of the disease free equilibrium (DFE)

The disease free equilibrium (DFE) of the virus-vector model (2.1) is given by

E0 = (H∗S ,H
∗
I ,H

∗
R, E

∗
S , E

∗
I , L

∗
S , L

∗
I ,V

∗
S ,V

∗
E,V

∗
I ,U

∗
L,U

∗
A) (2.2)

=

(
H∗S , 0, 0, E

∗
S , 0, L

∗
S , 0,V

∗
S , 0, 0, 0, 0

)
, (2.3)

where

H∗S = H0 (2.4)

E∗S =
mLC(qS mLrS − µLµV − mLµV)rS

dµ2
VmE

=
mLrS

µVmE
C (2.5)

L∗S =
C(qS mLrS − µLµV − mLµV)

dµV
= C (2.6)

V∗S =
mLC(qS mLrS − µLµV − mLµV)

dµ2
V

=
mL

µV
C (2.7)

and H0 is the initial density of hosts.
From the Routh Hurwitz criterion, we see that within the disease-free model, i.e., within the

four-compartment model which is derived from the full model by neglecting the diseased variables
(HI , EI , LI ,VE), the DFE is locally asymptotically stable provided that

rS mLqS > µv(µL + mL),
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Table 1. Description of the variables and parameters of the bird-virus-vector model (2.1).

Variable Description

HS (t) Susceptible hosts
HI(t) Infected hosts
HR(t) Recovered hosts
ES (t) Eggs laid by susceptible and exposed mosquitoes
EI(t) Eggs laid by infected mosquitoes
LS (t) Susceptible larvae
LI(t) Infected larvae
VS (t) Susceptible mosquitoes
VE(t) Exposed mosquitoes
VI(t) Infected mosquitoes
UL(t) Larvaecide
UA(t) Adultcide

Parameter Description

b mosquito biting rate
pMH mosquito-to-host transmission probability
dH disease induced host mortality
gI recovered at the rate
rS Susceptible and exposed mosquitoes egg laying rate
rI Infected mosquitoes egg laying rate
mE rate eggs hatch into larvae
mL Susceptible and infected larvae maturation rate
qS fractions of eggs laid by susceptible mosquitoes that hatch
qI fraction of eggs laid by infectious mosquitoes that hatch
φ fraction of larvae from infectious mosquitoes that are infected
d density dependent death rate
C carrying capacity for larvae
pHM host-to-mosquito transmission probability
µV adult mosquitoes natural mortality rate
µL larvae mosquitoes natural mortality rate
kL disease progress rate
km1 per capita rate at which larvae die in the presence of maximal larvicide
km2 per capita rate at which adult mosquitoes die in the presence of maximal adulticide
gL larvicide decay rate
gA adulticide decay rate
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i.e., provided that d > 0. That is, the eigenvalues of the Jacobian matrix of the four-compartment model
evaluated at the DFE have negative real part in this case.

The stability of E0 within the full model can be established by calculating the reproduction number
R0 using the next generation matrix method [45] on system (2.1). Taking HI , EI , LI ,VE,VI as the
infected compartments and adopting the notation in [45], the Jacobian matrices F and V which account
for new infections and transfer between infected compartments, respectively, are defined as:

F =



0 0 0 0 bpMH

0 0 0 0 rI

0 0 0 0 0
bpHMV∗S

H∗S
0 0 0 0

0 0 0 0 0



V =


n1 0 0 0 0
0 mE 0 0 0
0 −mEqIφ n2 0 0
0 0 0 n3 0
0 0 −mL −kL µV


,

where n1 = dH + gI , n2 = µL + mL +
dL∗S
C = µL + mL + d, n3 = kL + µV . We define R0 as the spectral

radius of the next generation matrix FV−1. It is given by

R0 =
1
2

mLrIqIφ

µVn2
+

1
2

1
µV

√
m2

Lr2
I q2

Iφ
2

n2
2

+
4b2 pMH pHMkLmLC

n1n3H0
,

where we have used (2.4) and (2.7) to eliminate H∗S and V∗S from the expression. R0 can be interpreted
as the expected number of secondary infections, in both mosquitoes and humans, produced by an
infectious individual during the infectious period in an entirely susceptible population. Note that since
V is a nonsingular matrix with the Z-sign pattern and F is nonnegative, the disease-free steady state is
locally asymptotically stable when R0 < 1 and unstable when R0 > 1 [45]. We summarize this result
in the following theorem.

Theorem 2.1. The disease-free equilibrium (H∗S , 0, 0, E
∗
S , 0, L

∗
S , 0,V

∗
S , 0, 0, 0, 0) of system (2.1) is

neutrally stable when R0 < 1, and unstable when R0 > 1.

As parameterized (see supplementary section 7) our model has a basic reproductive number of 1.23.

2.3. The endemic equilibrium

We note that the model does not have an endemic steady state since new birds are not recruited
into the population and vertical transmission in mosquitoes is insufficient to sustain the epidemic
due to reduced fertility of infected mosquitoes. Indeed, suppose there exists a nonnegative endemic
equilibrium (Hi

S ,H
i
I ,H

i
R, E

i
S , E

i
I , L

i
S , L

i
I ,V

i
S ,V

i
E,V

i
I , 0, 0) setting all derivatives to zero, we see that

H′s(t) = 0 and V i
I , 0, yields Hi

S ≡ 0, and thus Hi
I ≡ 0 and V i

E ≡ 0. Using the differential equations for
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EI and VI to solve for Ei
I and V i

I in terms of Li
I and substituting the expression for Ei

I into the differential
equation for LI , we find

Li
I =

C
dµV

(
φqIrImL − µLµV − mLµV −

dµV

C
Li

S

)
. (2.8)

Note that (2.8) and Li
I , L

i
S ≥ 0 implies

0 ≤ Li
S < C

(φqIrImL − µLµV − mLµV)
(qS rS mL − µLµV − mLµV)

(2.9)

Since µVd = qS rS mL − µLµV − mLµV > 0, nonnegativity of Li
S requires φqIrImL − µLµV − mLµV ≥ 0.

Using the differential equations for ES and VS to solve for Ei
S and V i

S in terms of Li
S and substituting

the expression for Ei
S and Li

I into the differential equation for LS , we find

Li
S =

C(1 − φ)qIrI

qIrI − qS rS

(φqIrImL − µLµV − mLµV)
(qS rS mL − µLµV − mLµV)

. (2.10)

From the previous discussion, we see that qIrI < qS rS together with (2.10) implies Li
S < 0, a

contradiction. On the other hand, H′s(t) = 0 and V i
I = 0, immediately yields Ei

I ≡ Hi
I ≡ V i

E ≡ Li
I ≡ 0.

Thus, as parameterized, there is no endemic steady state in any case. We summarize this result in the
following theorem.

Theorem 2.2. If the only impact of WNV infection on the mosquito population is to alter the fertility of
infected mosquitoes, the late-season model of WNV infection has a nonnegative endemic equilibrium
if and only if WNV infection increases the fertility of infected mosquitoes.

3. Optimal control problems

Mosquito and WNV controls are accomplished via a control schedule that is determined by N
treatment times, T (i), i = 1 . . . ,N, spanning a fixed duration of time T f , and the corresponding
application levels of larvicide, uL(i), i = 1 . . . ,N, and adulticide, uA(i), i = 1 . . . ,N. Hence, the
level of larvicide and adulticide in the environment is subject to discrete impulses:

UL(T (i)+) = UL(T (i)−) + uL(i) for (larvicide) (3.1)
UA(T (i)+) = UA(T (i)−) + uA(i) for (adulticide), (3.2)

The treatment times are discrete state variables. In order to select optimal treatment times, we introduce
control variables τ(i), which give the time between treatment i − 1 and treatment i, that is τ(i) is the ith

waiting time. Hence,
T (i) = T (i − 1) + τ(i), (3.3)

and we have the terminal state constraint:

T (N) = T f . (3.4)

Thus, an impulse control for the system takes the form of a sequence of control triples
{(uL(i), uA(i), τ(i))}Ni=1 such that

0 ≤ uL(i) ≤ 1 (3.5)
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0 ≤ uA(i) ≤ 1 (3.6)
t(i) ≤ τ(i), (3.7)

where t(i) is the minimal permissible value of the ith waiting time. In the sequel, t(1) = 0 and t(i) = 1
for i = 2, . . . ,N

We consider two objective functionals, P1 and P2 , which are designed to promote mosquito control
and disease control, respectively.

(P1: Vector Control) This objective functional seeks to balance the cost of insecticide applications
with the benefit of reducing the number of mosquitoes. That is, we minimize the mosquitoes during the
entire treatment period and the eggs at the final treatment time, while minimizing a quadratic control
schedule cost.

J = cV

∫ T (N)

0
VS (t) + VE(t) + VI(t) dt + cE(ES (T (N)) + EI(T (N))) + cL

N∑
i=1

u2
L(i) + cA

N∑
i=1

u2
A(i) + cT

N∑
i=1

τ2(i) (3.8)

We solve this impulse optimal control problem by first converting it to a nonlinear discrete
optimization problem. For this, we introduce discrete state variables corresponding to the values of
the continuous state variables just after the control application.

x1(i) = HS (T (i)+)
x2(i) = HI(T (i)+)
x3(i) = HR(T (i)+)
x4(i) = ES (T (i)+)
x5(i) = EI(T (i)+)
x6(i) = LS (T (i)+)
x7(i) = LI(T (i)+)
x8(i) = VS (T (i)+)
x9(i) = VE(T (i)+)

x10(i) = VI(T (i)+)
x11(i) = UL(T (i)+)
x12(i) = UA(T (i)+)

In addition, we introduce an artificial discrete state variable to record the value of the integral part of
the objective functional,

x13(i) = cV

∫ T (i)+

0
VS (t) + VE(t) + VI(t) dt,

and a discrete state variable to track the current time

x14(i) = T (i).
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After discretization, the objective functional becomes

J = x13(N) + cE(ES (T (N)) + EI(T (N))) + cL

N∑
i=1

u2
L(i) + cA

N∑
i=1

u2
A(i) + cT

N∑
i=1

τ2(i). (3.9)

To complete the discretization of the problem, we must define the transfer function, G, that
determines the value of the state at the next time step in terms of the control and value of the state
at the previous time step [8]. For convenience, we first define a function g : R13 → R13 representing
the derivatives of the continuous variables. That is, the first twelve components of g are given by
the right-hand side of the model system (2.1) and the thirteenth component of g is given by cV times
the integrand in (3.8). So, for example, g1(x) = −pMHbx10

x1
x1+x2+x3

and g13(x) = cV(x8 + x9 + x10).
Furthermore, let us denote the solution of the initial value problem,

X′(t) = g(X); X(0) = x0,

by X(t; x0). Then G(x, u, τ) : R14 × R2 × R→ R14 is defined as follows: For j = 1 . . . 13,

G j(x(i), u(i + 1), τ(i + 1)) := x j(i) +

∫ τ(i)

0
g j(X(s; x1(i), . . . x13(i))) ds

+ h j(u(i + 1), τ(i + 1)), (3.10)

G14(x(i), u(i + 1), τ(i + 1)) = x14(i) + h14(u(i + 1), τ(i + 1)),

where
u(i) := (uL(i), uA(i)) ∈ R2,

and h : R3 → R14 is defined by
h(u, τ) = [0, · · · 0, uL, uA, 0, τ]. (3.11)

Notice that G is a function of the state at the previous time and the current pesticide application levels
and waiting time.

Now we begin to form the necessary conditions for an optimal control of the discrete problem:
Choose (u∗, τ∗) ∈ R3×N to minimize

J = x13(N) + cE(ES (T (N)) + EI(T (N))) + cL

N∑
i=1

u2
L(i) + cA

N∑
i=1

u2
A(i) + cT

N∑
i=1

τ2(i), (3.12)

subject to the following constraints:
for i = 1 . . .N

0 = x0 − x(0) (3.13)

0 = G
(
x(i − 1), uL(i), uA(i), τ(i)

)
− x(i) (3.14)

0 = T (N) − T f (3.15)
0 ≥ −uL(i) (3.16)
0 ≥ uL(i) − 1 (3.17)
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0 ≥ −uA(i) (3.18)
0 ≥ uA(i) − 1 (3.19)
0 ≥ t(i) − τ(i) (3.20)

Notice we have 14(N + 1) equality constraints on the state components plus 1 equality constraint on
the 14th state component at the final time, and 5N inequality constraints for the control variables. Also,
recall that t(1) = 0 and t(i) = 1 for i = 2, . . . ,N. Letting

z = (x(0), x(1), u(1), τ(1), . . . x(N), u(N), τ(N)) ∈ R14(N+1)

we define the ith vector of equality constraints according to

ri(z) = G
(
x(i − 1), uL(i), uA(i), τ(i)

)
− x(i) = 0 ∈ R14 i = 1, . . .N

r0(z) = x(0) − x0 = 0 ∈ R14,

rN+1(z) = x14(N) − T f = T (N) − T f = 0 ∈ R,

so that the equality constraints can be summarized as

r(z) := (r0(z), r1(z), . . . , rN(z), rN+1(z)) = 0.

Similarly, we define the vector of inequality constraints q(z) according to

qi(z) := (−uL(i), uL(i) − 1,−uA(i), uA(i) − 1,−τ(i)); i = 1 . . .N
q(z) := (q1(z), . . . , qN(z)); qi ∈ R

5.

So that the inequality constraints can be summarized as q(z) ≤ 0. Also, let J(z) be the objective
functional. Then, in the language of nonlinear programming, we seek to solve the following problem:

(P1’ Vector Control): Choose z∗ to minimize J(z) subject to r(z) = 0 and q(z) ≤ 0.
Adopting notation from [8], we form the necessary conditions for this problem as follows.

Theorem 3.1. If z∗ is a solution of (P1), there exists a nonzero vector λ = (−1, y(0), . . . , y(N), y(N +

1)) ∈ R14(N+1)+2 (where y(i) ∈ R14, for i = 0 . . .N and y(N + 1) ∈ R) and a vector µ = (µ1, . . . , µN) ≤ 0
(where µi ∈ R

5) such that if the Hamiltonian for the system is defined as

H(z) = λ · (J, r0(z), . . . , rN(z), rN+1(z)) + µ · q

= −J +

N+1∑
i=0

y(i) · ri(z) +

N∑
i=1

µi · qi(z), (3.21)

then

DH = 0
µi; jqi; j(z∗) = 0 j = 1, . . . , 5

where the derivative of the Hamiltonian is

DH = λ · D(J, r0(z), . . . rN+1(z)) + µ · Dq(z)
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= −∇J(z) +

N+1∑
i=0

yi · Dri(z) +

N∑
i=1

µi · Dqi(z)

= −∇J(z) +

N+1∑
i=0

14∑
j=1

y j(i)∇ri; j(z) +

N∑
i=1

5∑
j=1

µi; j∇qi; j(z). (3.22)

�

From the necessary conditions of Theorem 3.1, we derive equations for the adjoint variables, y(i) ∈
R14, i = 0, . . . ,N, by considering the derivative of the Hamiltonian with respect to the state variables.
In particular, differentiating with respect to x(i) for i = 0, . . . ,N − 1,

0 = y(i + 1)
∂G
∂x

(x(i), u(i + 1), τ(i + 1)) − y(i). (3.23)

Recall that

G(x(i), u(i + 1), τ(i + 1)) = [X(t; x(i)) + h(u(i + 1), τ(i + 1)), x14(i) + τ(i + 1)],

so
∂G1:13

∂x1:13(i)
=

∂X
∂x(i)

, where

∂X
∂x(i)

=


∂X1
∂x1(i)

∂X1
∂x2(i) · · ·

∂X1
∂X13(i)

...
...

. . .
...

∂X13
∂x1(i)

∂X13
∂x2(i) · · ·

∂X13
∂x13(i)


and

∂G
∂x(i)

=


∂X1
∂x1(i)

∂X1
∂x2(i) · · ·

∂X1
∂X13(i) 0

...
...

. . .
...

∂X13
∂x1(i)

∂X13
∂x2(i) · · ·

∂X13
∂x13(i) 0

0 0 · · · 0 1

 .
Differentiating with respect to x(N), we find the adjoint variable at the final treatment:

y(N) = [0, 0, 0,−cE, −cE, 0, . . . 0, −1, K],

where K := y(N + 1). In fact,
y14(i) ≡ K; i = 0 . . .N.

Differentiating with respect to u and τ, we find the optimality conditions:

uL(i) = max
(
0,min

(
1,

y11(i)
2cL

))
(3.24)

uA(i) = max
(
0,min

(
1,

y12(i)
2cA

))
(3.25)

τ(i) = max

0, y14(i) +
∑13

j=1 y j(i)g j(X(τ(i); x(i)))

2cT

 . (3.26)
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Now we consider an objective functional aimed at controlling disease. (P2: Disease Control) This
objective functional seeks to balance the cost of insecticide applications with the benefit of limiting the
presence of disease. That is, we seek to minimize the infected mosquitoes and hosts during the entire
treatment period and infected eggs at the final treatment time, while minimizing a quadratic control
schedule cost.

J2 = cI

∫ T (N)

0
VI(t) + HI(t) dt + cEEI(T (N)) + cL

N∑
i=1

u2
L(i) + cA

N∑
i=1

u2
A(i) + cT

N∑
i=1

τ2(i). (3.27)

As for the vector control problem, we solve this impulse optimal control problem by first converting it
to a discrete optimization problem. Since the process is very similar as for the first problem, we omit
the details. However, the reader should note that the dynamics of x13 differ between the two problems.
Also, for the disease control problem, the constraint on the adjoint variable at the final treatment time
is

y(N) = [0, 0, 0, 0, −cE, 0, . . . 0, −1, y(N + 1)].

4. Numerical methods

We use the necessary conditions to identify candidate optimal controls. The necessary conditions
are solved numerically using a simple forward-backward sweep algorithm [30]: (1) The current control
is used to update the state and adjoint variables. (2) The state and adjoint variables are used to compute
a new control from the necessary conditions, as described in Theorem 3.1. (3) A convex combination
of the new and current controls is used to update the control value, and the next iteration begins.
The algorithm converges when the relative errors in the state, adjoint, and control variables are small.
Specifically, the convergence criteria for each variable z is

δ

N∑
i=1

|zi| −

N∑
i=1

|zi − z∗i | > 0,

where z represents the new value of the variable, z∗ represents the current value of the variable, δ ≤ 10−7

is a small constant controlling the size of the relative error, and N is the number of components in the
vector z. In addition, when computing the new control, we enforce an upper limit of T f on each
waiting time. Although not formally included in the problem statement, this limit is implied by the
terminal constraint T f = T (N). We use several standard initial guesses for the control schedule to
initiate the forward backward sweep algorithm. For the vector control problem we begin with τ(i) ≡ 1,
uA(i) ≡ uL(i) ≡ 0. For the disease control problem we begin with τ(i) =

T f

N−1 i = 2, . . . ,N, τ(1) = 0, and
uA(i) ≡ uL(i) ≡ 1.

Since each objective functional is a continuous real-valued function of the control variables which
are taken from a compact domain, an optimal solution is guaranteed to exist. Solutions of the
control problems and necessary conditions, however, need not be unique. Hence when solving for
the necessary conditions we are only identifying candidate optimal controls. For some objective
functionals and parameterizations we find evidence of the existence of multiple solutions of the
necessary conditions and local minima of the control problem. For example, the disease control
problem with cE = cI = 5000, cA = 10, cl = 1, and cT = 0.05 appears to have multiple local
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solutions as the value of the unknown constant adjoint variable, y14, which determines the duration of
the control period, T f , increases past 0.92. For y14 > 0.92 and when initialized with our standard initial
guess, the forward-backward sweep algorithm converges to a solution with a fairly regular control
schedule and τ(1) = 2.41. For y14 < 0.92 and when initialized with our standard initial guess, the
forward-backward sweep algorithm converges to a solution with an irregular control schedule with
τ(1) ≈ 0. However, a similar irregularly-timed solution can be found for y14 = 0.925 when the
algorithm is initialized with the solution for y14 = 0.92. Both solutions are shown in Figure 12. The
irregularly-timed solution achieves a lower value of the objective functional than both the regularly
timed solution obtained with the standard initial guess and the corresponding fixed-time solution.
Hence the irregularly-timed solution is a good candidate for the optimal solution. Unfortunately, this
preferred irregularly-timed solution seems difficult to find without a good initial guess. Since we are
interested in exploring the potential benefits of optimally selecting the treatment times, as opposed to
numerical optimization algorithms, in the sequel we only consider parameterizations of the problem
for which the forward-backward sweep algorithm converges to a candidate optimal solution, in the
sense that its limit outperforms the limit of the corresponding fixed-time algorithm. We note that the
algorithm seems to more readily converge to such solutions for smaller T f , larger values of cV , cI and
cE, and smaller values of cT .

Finally, before viewing the numerical simulations with control, it is worth noting that, since
pesticides do not instantaneously eliminate mosquitoes and larvae, optimal controls will not apply
any pesticide at the end of the treatment time.

Detailed descriptions of the model parameterization are in supplementary section 7. All simulations
are performed in MATLAB.

5. Simulations and results

5.1. No control

Figures 2–3 show the egg, vector, and host densities without any control and after the introduction
of a small number of infected mosquitoes into the population. We see that in the absence of control, the
epidemic is predicted to burn out after approximately four months. At the end of the epidemic, the bird
population is reduced to approximately 50% of its original size. Interestingly, even at the epidemics
height, only a small proportion of the birds and mosquitoes are infected. This may be due to the short
lifespan of the mosquito and the speed with which the infection progresses within the bird hosts.

5.2. Control

In the following subsections, we show results on the control of the mosquito population and WNV
epidemic as determined by two objective functionals which are designed to achieve either mosquito
control or disease control. In so doing, we seek to address the following questions: How does the
control and its impact on the system vary with the objective type? Is it beneficial to optimize the
treatment timing? How does the control and its impact on the population vary with the type of pesticide
used?

To address the third question, we model two specific types of larvicide (S-methoprene briquets [40]
and VectoBac [35]) and a general adulticide. Both larvicides are used to control mosquito larvae in
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Figure 2. The density of eggs and mosquito vectors through time in the absence of control
after the introduction of a small number of infectious mosquitoes into the population. All
variables are initialized at their steady-state value, expect the density of infectious mosquitoes
is one hundredth the steady-state density of mosquitoes.
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Figure 3. The density of bird hosts through time in the absence of control after the
introduction of a small number of infectious mosquitoes into the population.All variables
are initialized at their steady-state value, expect the density of infectious mosquitoes is one
hundredth the steady-state density of mosquitoes.
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stagnant water, such as road-side gullies, however, S-methroprene briquets are a slow-release larvicide
treatment that is designed to last for several months, whereas the duration of effectiveness for VectoBac
is much shorter. Hence, we are interested to see how the control schedule, cost, and effectiveness varies
with the type of larvicide used. Our control also includes an adulticide. Although there are many
types of mosquito adulticides, unlike larvicides they are similarly effective and short lived. Indeed,
adulticides are typically distributed via ultra-low-volume (ULV) aerosol sprays which target flying
mosquitoes so that the time the spray remains airborne (typically 15 minutes to one hour) determines
the duration of the treatment. Although ULV sprays do not last very long, the adulticides that they
contain are highly effective at killing mosquitoes. Since adulticides and larvicides target different
mosquito life stages and have very different dynamics, we are interested to see differences in their
deployment under each objective functional.

To address the second question we simulate in parallel to each optimal control problem the
corresponding optimal control problem with fixed treatment times. From here on, we will refer to
the problems defined in Section 3 as optimal-time control problems to contrast with the corresponding
fixed-time control problems. We set the fixed-time schedule to apply the first treatment at the initial
time, and apply subsequent treatments at equally-spaced intervals over the duration of the control
period. In each case, the fixed-time optimal control objective functional is that of the original control
problem less the quadratic control timing cost (

∑N
i=1 τ

2(i)). When interpreting the control timing cost
it is helpful to note that the timing cost is minimized subject to the constraint

∑N
i=1 τ(i) = T f , when

τ(i) ≡ T f

N . That is, regularly timed control schedules are less expensive. Table 2 shows the values of the
optimal-time objective functional and fixed-time objective functional evaluated at controls that satisfy
the necessary conditions (i.e., candidate optimal controls) for each problem considered.

5.3. Vector control (P1)

Figures 4–5 show the densities of eggs, larvae, and vectors under vector control with S-methroprene
and VectoBac, respectively. We see that eggs, larvae, and adult mosquitoes decrease dramatically as a
result of the control.

Figure 6 shows the larvicide and adulticide schedules with S-methroprene and VectoBac,
respectively. These figures reveal several interesting control features. First note that both solutions
involve controls with highly irregular timing wherein high levels of adulticide and larvicide are applied
consecutively during the fist two days. Table 2 confirms significant gains are made by optimizing
the control timing for this objective functional. Indeed, the control schedules that correspond to the
optimal-time control algorithm achieve lower optimal-time objective functional values than their fixed-
time counterparts. In fact, even the fixed-time objective value evaluated at the optimal-time control is
lower than the fixed-time objective value evaluated at the fixed-time control. This means that even if
we neglect to account for the quadratic timing cost, the optimal-time control is more efficient than the
fixed-time control. After the second day, the control timing is more regular, however, the amount of
pesticide applied continues to vary. For example, both solutions involve a third high dose application
of larvicide, after which larvicide and adulticide application levels are significantly lower. In addition,
Vectobac dosing has an unexpected oscillating pattern wherein high and low larvicide application levels
alternate. Finally, note that control schedules with S-methroprene and VectoBac show very different
long-term patterns. Whereas very little S-methroprene is applied after the third treatment, significant
levels of VectoBac continue to be applied for the remainder of the control period. In addition, although
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the adulticide treatment schedule is similar between the two larvicides, the amount of adulticide applied
is lower with S-methroprene. Looking at Table 2 we see that the vector control objective functional
values are lower with S-methroprene than with VectoBac, indicating that the longer-lasting larvicide is
more efficient according to this objective functional.

0 10 20 30 40 50 60 70 80 90 100

time (days)

0

0.1

0.2

0.3

0.4

0.5

0.6

d
e
n
s
it
y
 (

in
d
/m

2
)

Density of eggs under vector control with S-methroprene

e
s

e
i

0 10 20 30 40 50 60 70 80 90 100

time (days)

0

0.1

0.2

0.3

0.4

0.5

0.6

d
e
n
s
it
y
 (

in
d
/m

2
)

Density of eggs under vector control with VectoBac

e
s

e
i

Figure 4. The density of eggs through time under vector control and after the introduction
of a small number of infectious mosquitoes into the population. All variables are initialized
at their steady-state value, expect the density of infectious mosquitoes is one hundredth the
steady-state density of mosquitoes. The control parameters are cE = cV = 5000, cA = 10,
cl = 1, cT = 0.05.
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Figure 5. The density of vectors through time under vector control. All variables are
initialized at their steady-state value. The control parameters are cE = cV = 5000, cA = 10,
cl = 1, cT = 0.05.
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Figure 6. Pesticide levels through time under vector control. All variables are initialized
at their steady-state value. The control parameters are cE = cV = 5000, cA = 10, cl = 1,
cT = 0.05.

5.4. Disease control (P2)

Figures 7–9 show the densities of eggs, larvae, vectors and hosts under disease control with S-
methroprene and VectoBac, respectively. We see that these controls effectively prevent the spread of
the infection and largely prevent mortality in the bird hosts. Interestingly, these control schedules
also allow for the preservation and partial recovery of the mosquito population. Hence, our results
support the idea that it is possible to prevent the spread of a WNV epidemic without eliminating the
mosquito population. Figure 10 illustrates the larvicide and adulticide schedules with S-methroprene
and VectoBac, respectively, under the disease control objective functional. We see that pesticide
application levels under disease control are much lower than those under vector control. In addition,
whereas larvicide levels are greater than adulticide levels under vector control, the opposite is true
under disease control. In summary these results suggest that moderate pesticide application can control
the spread of disease without eliminating the mosquito population and that adulticide is important for
disease control.

Looking at Figure 10, we see that aside from a high initial treatment near t = 0 the control timing is
nearly regular with almost equally spaced weighting times. This suggests that beyond the first waiting
time, treatment times are selected primarily to minimize the quadratic timing cost, and hence there is
limited benefit in optimizing the treatment timing beyond the first treatment. Looking at Table 2, we
see that the objective functional values for disease control under optimal-time control are lower than
those under fixed-time control, however, in each case, the difference between the two values is not
large.

Finally, comparing the results for S-methroprene and VectoBac in Table 2, we see that VectoBac is
only slightly less efficient than S-methroprene at controlling the spread of disease. This result differs
from the the previous case, where S-methroprene was found to be much more efficient than VectoBac
at controllong mosquitoes. Moreover, looking at Figure 8 we see that VectoBac has significantly
less impact on the mosquito population. Hence our results suggest that short-lived pesticides may be
preferred for disease management since they are highly effective for this purpose and have smaller
environmental impacts.
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In Figure 11, the model-predicted instantaneous percent reduction in adult emergence achieved by
two larvicides over time under the simplifying assumptions discussed in section A.3 is given.
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Figure 7. The density of eggs through time under disease control and after the introduction
of a small number of infectious mosquitoes into the population. All variables are initialized
at their steady-state value, expect the density of infectious mosquitoes is one hundredth the
steady-state density of mosquitoes. The control parameters are cE = cI = 5000, cA = 10,
cl = 1, cT = 0.05.
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Figure 8. The density of vectors through time under disease control and after the introduction
of a small number of infectious mosquitoes into the population. All variables are initialized
at their steady-state value, expect the density of infectious mosquitoes is one hundredth the
steady-state density of mosquitoes. The control parameters are cE = cI = 5000, cA = 10,
cl = 1, cT = 0.05.

AIMS Mathematics Volume 7, Issue 10, 19597–19628.



19617

0 10 20 30 40 50 60 70 80

time (days)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

d
e
n
s
it
y
 (

in
d
/m

2
)

10
-3

Host density under disease control

with S-methroprene

h
s

h
i

h
r

0 10 20 30 40 50 60 70 80 90

time (days)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

d
e
n
s
it
y
 (

in
d
/m

2
)

10
-3 Host density under disease control with VectoBac

h
s

h
i

h
r

Figure 9. The density of hosts through time under disease control and after the introduction
of a small number of infectious mosquitoes into the population. All variables are initialized
at their steady-state value, expect the density of infectious mosquitoes is one hundredth the
steady-state density of mosquitoes. The control parameters are cE = cI = 5000, cA = 10,
cl = 1, cT = 0.05.
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Figure 10. Pesticide levels through time under disease control and after the introduction of
a small number of infectious mosquitoes into the population. All variables are initialized
at their steady-state value, expect the density of infectious mosquitoes is one hundredth the
steady-state density of mosquitoes. The control parameters are cE = cI = 5000, cA = 10,
cl = 1, cT = 0.05.
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Figure 11. The model-predicted instantaneous percent reduction in adult emergence
achieved by two larvicides over time under the simplifying assumptions discussed in section
A.3.

Table 2. Objective functional values.
Objective Larvicide Control Type Obj. funct. value F.T. Obj. funct. value

Vector control S-methroprene optimal time 70.03 20.16
Vector control S-methroprene fixed time 77.19 32.19
Vector control VectoBac optimal time 73.18 22.96
Vector control VectoBac fixed time 79.75 34.75
Disease control S-methroprene optimal time 39.38 3.79
Disease control S-methroprene fixed time 39.44 3.89
Disease control VectoBac optimal time 39.45 3.85
Disease control VectoBac fixed time 39.51 3.95

6. Discussion & Conclusions

Here we present a West Nile virus transmission model that describes the interaction between bird
and mosquito populations (eggs, larvae, adults) and the dynamics of larvicide and adulticide. Because
our model does not include bird recruitment, it is best suited to describe mid- to late-season WNV
dynamics. We parameterize the model to reflect warm conditions, conducive to mosquito reproduction
and disease transmission, and derive the basic reproduction number of the infection (R0 = 1.23) as
the spectral radius of the next-generation matrix. We formulate two optimal control problems which
seek to balance the cost of insecticide applications (both the timing and application level) with (1)
the benefit of reducing the number of mosquitoes, and (2) the benefit of reducing the disease burden.
Both problems are reformulated as nonlinear discrete optimization problems. Control schedules which
satisfy the corresponding optimality conditions are identified numerically using MATLAB. Since
necessary conditions need not be sufficient, we refer to these control schedules as “candidate optimal
control schedules.”

Numerical experiments address three questions: (1) How does the control and its impact on the
system vary with the objective type? (2) Is it beneficial to optimize the treatment timing? (3) How
does the control and its impact on the population vary with the type of pesticide used?

We find that the objective functional has a significant impact on the candidate optimal control
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schedules. For the vector control problem, the candidate optimal control is front-loaded with two high-
level pesticide applications on successive days. The candidate optimal control schedule for the disease
control problem exhibits more regular timing. Also, the level of larvicide in the environment under
vector control is much higher than that under disease control. These differences allow the mosquito
population to persist at reduced levels under disease control. This observation can have important
implications for managers seeking to control WNV while minimizing environmental impacts.

The vector control problem also demonstrates that there can be substantial benefit in optimizing
the treatment timing. In this case, we find that the value of the objective functional for the candidate
optimally-timed control is considerably lower than that of the corresponding fixed-time control. In fact,
the candidate optimally-timed control outperforms the corresponding fixed-time control even when we
neglect to account for the timing cost. In contrast, for the disease control problem, we observe very
minor benefit to optimizing the treatment timing. However, simulations suggest that it is important
to optimize the initial treatment time, and that fast initial treatment is needed in this case (results not
shown). Since the fixed-time control necessarily applies the initial treatment at t = 0, the benefit
of optimizing the first treatment time is not evident when comparing the fixed and optimal treatment
schedules for this problem.

Finally, when comparing solutions using long-lasting S-methroprene briquets to those using
VectoBac, we see that applications levels for VectoBac are higher than those with S-methroprene.
As a result, S-methroprene is more efficient than VectoBac at controlling the mosquito population.
This increased efficiency is evidenced by the considerable difference in the vector control objective
functional values for these two larvicides. Nonetheless, both larvicides achieve near complete
elimination of the mosquito population under the vector control objective functional. In contrast, the
disease control objective functional value with S-methroprene is only slightly lower than that with
VectoBac, suggesting that these two larvicides are similarly efficient at controlling WNV. Since time-
averaged larvicide levels in the environment appear to be lower with VectoBac, and since the mosquito
population is larger under VectoBac, this result suggests that short-lived larvicides are sufficient for
disease control, and may even be preferable due to their reduced environmental costs.

It is important to note that the management model developed here has many limitations. For
example, since we do not consider bird recruitment, this model is not appropriate for studying WNV
disease in the early spring and summer when considerable bird immigration and egg-laying take place.
Similarly, the model does not incorporate spatial features or seasonality. Nevertheless, we believe our
mosquito management model is helpful and reasonably realistic over short time periods and smaller
spatial scales. Detailed characterizations of pesticide dynamics and optimal selection of pesticide
application times, represent major contributions of this work, which have enabled us to derive the
above-mentioned results. Future work will be aimed at extending the model to additional seasons and
considering the impacts of spatial effects.
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Appendix

A. Supplementary: parameters explained

Here we describe how parameter estimates are obtained from available data. It is important to note
that none of the data were collected for the purpose of parameterizing this model. Hence, a parameter’s
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value/range represents a rough educated guess.

A.1. Mosquito demographics

Culex mosquitoes are the primary vector of West Nile virus in North America [38,41]. The mosquito
life-cycle consists of four stages, eggs, larvae, pupae, and adults. Mosquito eggs require water to hatch,
and both the larva and pupa life stages are aquatic [11]. In our model, we combine larva and pupae
into a single life stage, which we call the larva phase, so that the life cycle is compartmentalized into
three phases: eggs, larvae, and adults.

When considering mosquito demographics, it is important to note that demographic parameters,
including survival probabilities and maturation rates, vary widely with environmental conditions [16,
18, 25, 38, 39, 49]. Since our model does not incorporate time-varying environmental conditions, we
use parameter values that reflect favorable reproductive conditions for Culex mosquitoes.

In favorable conditions, Culex pipiens eggs hatch in about two days [11, 18]. Hence, we set the
hatch rate (mE) to 1

2 day−1.
In warm conditions, Culex larvae mature in one or two weeks [11,16]. Hence, we set the maturation

rate of larva (mL) to 1
7 day−1.

Culex mosquitoes deposit eggs in rafts of about 100-200 eggs [18,41]. However, WNV may reduce
the size of the first egg raft by 50% [41]. Since the average length of a gonotrophic cycle for a Culex
mosquito in a residential habitat is 5−10 days (and depends on the species) [24], and since mosquitoes
in the wild are unlikely to survive multiple gonotrophic cycles [24,41], we set the rate of egg-laying of
uninfected mosquitoes (rS ) to 150/8 ≈ 18.75 eggs

mosquito · day and the intrinsic rate of increase of infected
mosquitoes (rI) to 100/8 ≈ 12.5 eggs

mosquito · day .
WNV infection can additionally impact the viability of eggs. Based on data from [41], we set the

probability of hatching for an egg laid by an infected mosquito to 43% (qI = 0.43), and we set the
probability of hatching for an egg laid by a susceptible mosquito to 56% (qS = 0.56).

Larval death rates are influenced by density-dependent factors, such as cannibalism [38], and
density-independent factors, such as extreme rainfall, and temperature [27, 39, 49]. Due to density-
independent factors, it seems likely that larval death rates will be higher in the field than in the
laboratory. Based on a study of Culex larva survival in a forested area [34], we set the density-
independent larval death rate (µL) to 0.16 day−1, so that the fraction of larvae surviving to adulthood in
the absence of density-dependent effects is mL

mL+µL
≈ 44% in our model. Meanwhile, density-dependent

effects are described via a larval carrying capacity, which determines the number of larva that a square
meter of land area can support. This parameter is estimated as the product of the number of larval
habitats per meter squared, the volume of an average larval habitat, the fraction of larval habitats that
are occupied, and the number of larva per unit volume of occupied habitat. Estimates of the number
of larval habitats per meter squared, the average volume of a larval habitat, and the fraction of larval
habitats occupied were taken from [33], where the distribution of mosquitoes in low-land Hawaii was
quantified. Specifically, following data from [33], 0.015 habitats per meter squared represents an area
rich in larval habitats, 0.8 L is the average volume of a larval habitat, and 0.007 is the fraction of
habitats occupied by Culex mosquitoes. The average number of larva per liter of occupied habitat is set
to 50, in agreement with data from [9] on the average density of Culex pipiens mosquitoes in man-made
breeding sites in Italy. This gives a larval carrying capacity (C) of 0.0042 indv

m2 . For comparison, the
average density of larva within occupied larval habitats (such as puddles and buckets) in the Gambia
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was reported to be 22 indv
m2 in [19] and the density of birds in low-land Hawaii is about 0.0065 indv

m2 [33].
The larval carrying capacity will vary greatly with geographic region, weather, and land-use. For this
reason we suggest a larval carrying capacity range of 0.001 − 0.01 indv

m2 .
Since the lifespan of an adult Culex pipiens mosquito is about 10.4 days in the wild [24], we set the

adult death rate (µV) to 1
10.4 day−1. We assume that resources are plentiful so that adult mosquitoes are

not subject to density-dependent death.

A.2. Transmission, progression, and recovery

Parameters that determine WNV transmissibility vary widely between Culex species and with
temperature [39]. For example, the probability of WNV transmission depends on environmental
conditions, viral titre, and species [25,39], and may vary widely between individuals [41]. Based on the
data from the previous sources, we set both the probability of transmission from host to mosquito (pHM)
and the the probability of transmission from mosquito to host (pMH) to 0.50. The disease progression
rate (kL), which is the reciprocal of the time between inoculation and the onset of infectiousness, is
set to 1

10 day−1 based on data from [41]. The infection-induced death rate of hosts (dI) is set to 1
5day−1

based on data from [28]. The duration of viremia provides an estimate of the duration of infectiousness.
Based on data from [28], we set the host recovery rate (gI) to 1

7 day−1. We set the biting rate (b) to
1
5 day−1 based on data from [38, 39] . Finally, some research suggests that vertical transmission of
West Nile Virus can occur in mosquitoes. We set the probability that a larva deposited by an infectious
mosquito is infected (φ) to 2.8/1000 [3].

A.3. Larvicide and adulticide dynamics

We modeled two types of larvicide: long-lasting S-methoprene briquets [40] and VectoBac [35],
both of which may be used to control mosquito larva in stagnant water, such as road-side gullies.
The maximal rate of larvicide-induced death (km1) and the rate at which the larvicidal activity of
S-methropene briquets decays (gL) in our model are estimated from the percent reduction in adult
emergence [40]. In order to relate these model parameters and data, we make several simplifying
assumptions and approximations: (1) We suppose that the larvicide-induced, per-capita death rate
(km1UL) and hatch rate (mEqS ES ) are constant over the interval in which adult emergence is measured.
(2) We approximate the density of larvae over an interval as the steady-state density corresponding to
the given parameters. (Note that the accuracy if this approximation improves as the value of µL + mL

increases.) (3) We suppose the steady-state concentration of larvae is well-approximated by that in
the absence of density-dependent death. (Note this assumption holds when either the hatch rate or the
density-dependent death rate is small.) Under the previous assumptions, the density of adults emerging
over a time interval of length T in the absence of larvicide is

mEqS ES

mL + µL
mLT,

and the density of adults emerging over the same interval of time in the presence of larvicide is

mEqS ES

mL + µL + km1UL
mLT.
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Hence, if p1 and p2 are the percent reductions in adult emergence achieved D1 and D2 days after
larvicide application, respectively, and pM is the maximal reduction in adult emergence achieved at
application then

1
mL + µL + km1

= (1 − pM)
1

mL + µL

1
mL + µL + km1 exp(−D2gL)

= (1 − p2)
1

mL + µL

1
mL + µL + km1 exp(−D3gL)

= (1 − p3)
1

mL + µL

(A.1)

Note that while pM is not necessary for model parameterization, we compute it for comparison with
data. Table 3 shows the data used in these computations. Figure 11 shows the instantaneous percent
reduction in adult emergence when the model is thus parameterized and under the above mentioned
simplifying assumptions.

When considering the larvicide parameters, it is important to note that UL represents neither the
absolute nor the normalized concentration of larvicide in the environment. Similarly, UL does not
measure larvicidal effectivness, that is, percent reduction in adult emergence. Hence, gL is not
comparable to the decay rate of a larvicide or the decay rate of the insecticidal activity of a larvicide.

Adulticides are distributed via ultra-low-volume (ULV) aerosol sprays which target flying
mosquitoes [5]. Hence, the time the spray remains airborne determines the duration of the treatment.
Adulticide droplets optimally sized to target flying mosquitoes are predicted to remain aloft for about
15 minutes to an hour in calm conditions. Hence, we set the settling rate (gA) to 24 day−1 so that the
average time to settle is 1 hr. ULV sprays are highly effective at killing mosquitoes. To determine the
maximum adulticide-induced death rate, we used mortality rate data for caged Ochlerotatus sollicitans
exposed to a synthetic pyrethroid adulticide, Biomist 31:66, via ULV spray in the field. Specifically, 1
and 12 hours post-application, the mortality rate was about 89% and 95%, respectively, in mosquitoes
91.4 meters downwind of the spray site at 50% the maximum label rate. The mortality rate was 4% in
the control group. In rough agreement with this data, we set the maximum adulticide-induced mortality
rate (km2) to 110.52 day−1. At this rate the adulticide is effective and fast acting: In the absence of other
types of mortality, approximately 77% and 90% of mosquitoes initially exposed to the half-maximal
dose will die within 1 and 12 hours, respectively, and 90% is the asymptotic mortality due to exposure
at the half-maximal dose. Specifically, km2 satisfies

km2 = −2 ln(0.1)gA. (A.2)

It is important to note that adulticide parameters vary with atmospheric conditions, and the presence of
vegetative and man-made shelters can reduce the effectiveness of adulticides [5].
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Table 3. Parameter values used in the simulations.
Parameter Description Value Range Ref.

b mosquito biting rate 1
5 day−1 0 − 0.4 [39]

pMH mosquito-to-host transmission probability 0.5 0 − 1 [25, 39, 41]
pHM host-to-mosquito transmission probability 0.5 0 − 1 [25, 39, 41]
dH WNV-induced mortality rate in birds 1

5 day−1 1
13 −

1
3 [28]

gI WNV recovery rate in birds 1
7 day−1 1

7 −
1
5 [28]

- eggs per raft 150 50 − 200* [41]
- length of Culex gonotrophic cycle 8 days 5 − 10* [24]

rS average susceptible/exposed egg-depositing
rate

150/8∗ eggs
mosquito · day - composite parameter

rI average WNV-infected egg-depositing rate 100/8∗ eggs
mosquito · day - composite parameter

mE rate eggs hatch into larvae 1
2 day−1 1

10 − 1 [11, 18]
mL susceptible and infected larvae maturation rate 1

7 day−1 1
24 −

1
6 [11, 18]

qS fractions of susceptible eggs that hatch 0.56 - [41]
qI fraction of exposed eggs that hatch 0.43 - [41]
φ fraction of exposed larva that are infected 0.003 [3]
d density dependent death rate 0.009 day−1 composite parameter
C mosquito carrying capacity 0.01 indv

m2 0.001 − 0.01 [9, 33]
NH(0) initial bird density 0.0015 indv

m2 0.00048 − 0.0065 [17, 24, 33]
µV adult mosquito natural mortality rate 1

10.4 day−1 1
10.4 −

1
6.25 ** [24]

µL larva natural mortality rate 0.16 day−1 0.24 − 0.0014*** [34, 39]
kL disease progression rate in vectors 1

10 day−1 - [41]
km1 maximum per capita rate of larvicide-induced

death (S-methoprene)
181.19 day−1 - composite parameter

km1 maximum per capita rate of larvicide-induced
death (VectoBac)

4.2963 × 104 day−1 - composite parameter

km2 maximum per capita rate of adulticide-induced
death

110.52 day−1 composite parameter

gL larvicide decay rate (S-methoprene) 0.6952 day−1 - composite parameter
gL larvicide decay rate (VectoBac) 1.1845 day−1 - composite parameter
gA rate at which ULV adulticide droplets settle 24 day−1 24 − 96 [48]

*Note that in [41] the number of eggs per raft varied between less than 50 and more than 250,
and in [24] the average length of a gonotrophic cycle for Culex mosquitoes in a residential habitat is
estimated to be between 5 and 10 days. **The limits of this range are estimates of the average longevity
of Culex quinquefasciatus and Culex pipiens in a residential habitat. ***Given other parameters, this
corresponds to 37 − 99% of larva surviving to emerge as adults, and hence assumes conditions are
suitable for breeding.

Table 4. Quantities used to determine larvicide parameters.
Larvicide Day (Range) Percent Reduction in Adult Emergence (Range) Ref.

S-methoprene briquet 150 day (125 − 150) 3%* [40]
S-methoprene briquet 100 day (100 − > 120) 50% [40]

VectoBac 10 day 64% [35]
VectoBac 8 day 95% [35]

*Residual effectiveness of S-methoprene briquet is assumed. All values are approximate.

Table 5. Quantities used to determine adulticide parameters.
Adulticide Description Value (Range) Ref.

ULV pesticide droplets time pesticide droplets remain airborne 1 hr (0.25 − 1) [48]
ULV synthetic pyrethroid spray mortality 12 hours post application in the field 95% (32.9 − 99.5) [29]
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Figure 12. Illustration of the existence of multiple numerical solutions: Convergence
to distinct solutions of the disease control optimal control problem with the larvicide S-
methroprene. K denotes the value of the constant adjoint variable y14 used in the simulations.
That is in both simulaitons K = y14(i) ≡ 0.925, cE = cI = 5000, cA = 10, cl = 1, and
cT = 0.05. In the first simulation, the control schedule is initialized as ul ≡ 1,, ua ≡ 1,
τ(1) = 0, and τ(i) = 90

9 , for i = 2, . . . , 10. In the second simulation, the control schedule is
initialized with a solution of the same disease control problem, except that K = 0.92. The
objective value for the first simulation is 45.16, that of the second simulation is 41.47.The
final treatment time for the first simulation is 85.34, that of the second simulation is 82.27.
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